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Executive Summary

The subject of this report is the detection of weak targets in a strong clutter environment.
Two situations arise depending upon whether or not the weak targets can be separated from
the clutter. For both cases new receivers are derived which provide significant improvement in
performance over other recently proposed techniques. This work includes development of an
adaptive joint-domain space-time processor, effective non-Gaussian weak signal detectors based
on spherically invariant random processes, and a new method for approximating the underlying
probability density function of random data which works extremely well with only 100 samples.
When the target and clutter are separable, space-time processing is effective in detecting the
target. In effect, this approach maximizes the signal-to-clutter ratio by using two-dimensional
filters on the joint spatial and Doppler spectra to isolate the target from the clutter. Furthermore,
for Gaussiau clutter, space-time processing is the optimum approach for detecting weak targets
in a strong clutter background whether or not the targets and clutter are separable.
Unfortunately, when the target and clutter spectra completely overlap, space-time processing
is ineffective in detecting weak targets. Nothing can be done to improve performance for the
Gaussian clutter case. However, for non-Gaussian clutter, effective weak signal detectors do
exist. Nevertheless, this is an area which, in spite of its importance, has received relatively little

attention. Much of this report is devoted to

1. the characterization, generation, and approximation of correlated non-

Gaussian radar clutter samples and




2. the design and performance of the corresponding weak signal detectors.
Many new and significant results are discussed in this report and are summarized below:

(1) An adaptive joint-domain space-time processor is derived which
not only outperforms currently proposed space-time processors
but also converges more rapidly and processes data more effi-
ciently. '

(2) Spherically invariant random processes (SIRPs) are shown to be
an attractive approach to the extremely difficult problem of mod-
eling correlated non-Gaussian random variables. Many useful and
desirable properties of SIRPs are derived in a straight-forward tu-
torial manner.

(3) To make it possible to model many different types of correlated
non-Gaussian clutter (e.g.- Weibull, K-distributed, Rician, etc.)

an extensive library of SIRPs is developed.

(4) To enable computer simulation of correlated non-Gaussian radar
clutter samples, which are needed for evaluating receiver perfor-

mance, two different canonical generation schemes are derived.

(5) Since the probability distribution underlying clutter is not likely
to be known in advance, a new method for approximating the uni-
variate probability density function of random data is developed
which outperforms'existing techniques while using significantly

fewer data samples.

(6) To approximate the probability distribution underlying the N cor-
related non-Gaussian radar returns received during a coherent
processing interval, the technique developed in item 5 is extended
in a eimple manner to the multivariate probability density func-

tion arising from spherically invariant random processes.

ii




(7) Weak signal receivers, known as locally optimum detectors, are
derived for correlated non-Gaussian clutter that can be approx-
imated by SIRPs. These detectors are shown to be canonical in
form and combine the conventional Gaussian receiver with the
appropriate nonlinearity.

(8) Because the locally optimum detectors are nonlinear and involve
non-Gaussian inputs, their performance must be evaluated by
Monte Carlo simulation. A technique is developed for determin-
ing the receiver thresholds that reduces by several orders of mag-
nitude the number of Monte Carlo trials required.

(9) The locally optimum detector for multivariate Student-T clutter
is shown to significantly outperform the conventional Gaussian

receiver when the target and clutter spectra completely overlap.
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Chapter 1

Intreduction

The subject of this report is the detection of weak targets in a strong clutter environment.
Two situations arise depending upon whether or not the weak targets can be separated from
the clutter. For both cases new receivers are derived which provide significant improvement in
performance over other recently proposed techniques. This work includes development of an
adaptive joint-domain space-time processor, effective non-Gaussian weak signal detectors based
on spherically invariant random processes, and a new method for approximating the underlying
probability density function of random data which works extremely well with only 100 samples.
Many new algorithms were developed for this purpose and resulted in extensive new software.
In a companion volume the quality of some of this software is evaluated and discussed.

Two situations arise depending upon whether or not the weak targets can be separated from
the clutter. For example, consider the situation illustrated in Figure 1.1 where the joint spatial
and Doppler spectra of the received radar samples are shown for targets 7y and T, and a single
clutter patch. Obviously, target 71 can be separated from the clutter by means of filtering
whereas the target T, cannot.

When the target can be separated from the clutter, performance is limited by the background
noise. Assuming a large signal-to-noise ratio, we refer to this as the strong signal case. When
the target and clutter overlap and the clutter-to-noise ratio is large, performance is limited by
the clutter. Assuming a small signal-to-clutter ratio, we refer to this case as the weak signal
case. Finally, when the clutter spectrum partially overlaps the target spectrum, performance is
limited by both the clutter and noise. We refer to this situation as the intermediate signal case.

The strong and intermediate signal cases are suitable for the adaptive joint-domain space-time
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Figure 1.1: Illustration of Target and Clutter Spectra

processor discussed in Chapter 2. The remainder of this report, Chapters 3-11, are devoted to

the solution of the weak signal case.

1.1 Adaptive Implementation of Optimum Space-Time Processing

A new adaptive algorithm, called the Joint-Domain Localized Generalized Likelihood Ratio
(JDL-GLR) detection algorithm, is presented in Chapter 2. This algorithm takes advantage of
the fact that it may be possible to separate the weak target from the strong clutter (interference)
by means of space-time processing. Specifically, space-time processing transforms the received
samples in space and time to a two-dimensional power spectral density involving both spatial
and Doppler frequencics. The spatial frequency is a function of the angle of arrival of the
radar pulse return (interference) plane waves with respect to the broadside of the antenna array
while the Doppler frequency is linearly proportional to the radial velocity of the object from
which the radar pulse is reflected (platforms from which the interference is emitted). When the
radar target’s angle of arrival and/or radial velocity differs significantly from those of the clutter
(interference), it is possible to separate out the target return. System performance is then limited
primarily by the background noise. Because the clutter (interference) environment is unknown
a priori and is likely to change with time and spatial position, the algorithm must be adaptive

with a sufficiently fast convergence rate. The JDL-GLR algorithm presented in Chapter 2 is




both data and computationally efficient and converges quickly for Gaussian random processes.
Embedded CFAR and robustness in non-Gaussian clutter (interference) are other properties of

this algorithm.
1.2 Weak Signal Detection

The algorithms presented in Chapters 3-11 were developed to handle the case for which it is
not possible to separate the target return from the clutter (interference). In other words, these
algerithms are intended to be applied only when the target and clutter (interference) spectra

overlap significantly. We refer to this situation as the weak signal problem. For this problem,

system performance is limited primarily by the clutter (interference). Several new algorithms
have been developed for the weak signal detection problem. Although these algorithms can be
used to combat both clutter and interference, for ease of discussion, the presentation focuses
only on weak signal detection in a strong clutter background. The statistics of clutter have been
observed to be both Gaussian and non-Gaussian. Because the weak signal detector for Gaussian

processes is identical to that for strong signals. only the non-Gaussian case is considered in

Chapters 3-11.

1.3 Literature Review on Spherically Invariant Random Processes

In general, the radar receiver receives N complex (or 2N quadrature component) samples from
each radar resolution cell. To develop an optimal receiver, it is necessary to have a closed form
analytical expression for the joint probability density function (PDF) of the received samples.
When the N samples are statistically independent, the joint PDF is simply the product of the
marginal PDFs. However, clutter samples are likely to be correlated. Because this correlation is
useful for canceling the clutter, it is important that the correlation be modeled. Unfortunately,
when the received samples are correlated and non-Gaussian, there are no unique analytical
expressions for their joint PDF. A search of the mathematical and signal processing literature
reveals that the theory of spherically invariant random processes (SIRP) provides a powerful
mechanism for obtaining the joint PDF of N correlated non-Gaussian random variables. The

literature search on SIRPs is reviewed in Chapter 3.

1.4 Radar Clutter Modeling Using SIRPs

As mentioned previously, the clutter is unknown apriori and is likely to change with time and

spatial position. Consequently, it is necessary to continuously monitor the environment in order




to determine the statistical nature of the clutter. To be able to model as many different types

F clutter as possible, a large library of multivariate non-Gaussian PDFs is necessary. Based
4 the properties of SIRPs, a library of joint PDFs is developed in Chapter 4 for correlated

non-Gaussian random variables.

1.5 Computer Generation of Simulated Radar Clutter Character-
ized as SIRPs

When dealing with non-Gaussian random processes, it is usually difficult , if not impossible
to analytically evaluate system performance. Performance must then be determined by means
of computer simulation. Two canonical procedures are presented in Chapter 5 for generaling

correlated non-Gaussian random variables which can be used to simulate samples from SIRPs.

1.6 A New Method for Univariate Distribution Approximation

Because the clutter environment is unknown a priori, the PDF underlying a set of N samples
must be approximated using measured samples from the environment. Chapter 6 describes an
algorithm for analyzing univariate random data. This algorithm has two modes of operation.In
the first mode, the algorithm performs a goodness-of-fit test. Specifically, the test determines,
to a desired confidence level, whether random data is statistically consistent with a specified
probability distribution. In the second mode of operation, the algorithm approximates the PDF
underlying the random data. In particular, by analyzing the random data and without any a
priori knowledge, the algorithm identifies from a stored library of PDFs that density function
which best approximates the data. Estimates of the scale, location, and shape parameters of the
PDF are provided by the algorithm. Of particular note is the observation that the algorithm

typically works well with small sample sizes of between 50 and 100 sampies.

1.7 Distribution Approximation of Radar Clutter by SIRPs

As noted earlier, the N complex samples received from each radar resolution cell are character-
ized by a multivariate PDF. For SIRPs, it is shown in Chapter 7 that the multivariate distribution
approximation problem can be reduced to an equivalent univariate distribution approximation
problem. Consequently, the algorithm of Chapter 6 is also used in Chapter 7 to approximate the
joint PDF underlying N correlated non-Gaussian clutter samples provided they are generated

from an SIRP.




1.8 Weak Signal Detection

The weak signal detection problem is developed in Chapter 8. Problems encountered in the
optimum likelihood ratio test (LRT') are pointed out. The concept of the locally optimum detector

(LOD) is introduced as a practical detector structure for the weak signal problem.

1.9 The Locally Optimum Detector
The LOD is derived in Chapter 9 using two different approaches. Both deterministic and

random target signals are considered. It is shown that the LOD determines whether a target is
present or not by comparing a statistic computed from the data to a set threshold. The receiver
structures are specialized to the case (or which the clutter plus noise can be approximated as an

SIRP.
1.10 Determining Thresholds for the Locally Optimum Detector

Not only is the clutter assumed to be non-Gaussian, the LOD receiver structure is non-linear.
As a result, system performance must be determined by means of computer simulation. The
threshold is conventionally determined through a Monte Carlo procedure. Unfortunately, the
number of trials is inversely proportional to the false alarm probability Pr. For example, when
Pr = 1078, a minimum of ten million trials need to be generated. To avoid carrying out so
many trials, a new technique, based on extreme value theory is presented in Chapter 10. It is
demonstrated that fairly accurate thresholds can be determined for false alarm probabilities as

small as 10~7 with as few as 5000-10,000 trials.

1.11 Performance of the LOD for the Multivariate Student-T Dis-
tribution
Assuming that the clutter plus noise can be approximated by the multivariate Student-T
distribution, the LOD is developed in Chapter 11 for the weak signal detection problem. The
system performance is evaluated by means of computer simulation. When Pr is less than or
equal to 10~2, it is shown that the Gaussian receiver requires a sigual to clutter ratio of 10-20

dB larger than that required by the LOD for the same values of Pp and Fp.




Chapter 2

Adaptive Implementation of Optimum
Space-Time Processing

2.1 Introduction

It is highly desirable for an airborne surveillance radar system to have the optimum or near
optimum performance for detection of weak targets in strong clutter/interference of complicated
angle-Doppler spectrum. As the clutter/interference spectrum is unknown to the system and the
clutter/interference environment may be varying in both time and space, i.e., nonstationary and
nonhomogeneous, the signal processor must be adaptive with a sufficiently fast convergence rate.

Consider a system which employs N, spatial channcls (subarrays of a phased-array) and has
N pulses in its Coherent Processing Interval (CPI). The optimum processor, or the Neyman-
Pearson’s likelihood ratio test for such a system, is well developed in [1] under the assumption
of Gaussian clutter/interference. This processor, to be referred to as the joint-domain optirmum
processor in this paper, has the highest performance potential which can be approached by adap-
tive algorithms such as the Sample-Matrix- Inversion (SMI) [2], the Generalized Likelihood Ratio
(GLR) (3, 4], and the Modified SMI [5, 6]. To approach this detection performance potential,
however, these algorithms require that the training data set (i.e., the so-called secondary data
set) have at least 2V,N; ~ 3N, N, independent and identically distributed (iid) data vectors.
Obviously such a training-data size requirement is impractical even for moderate N, and N,, as
the environment in which an airborne surveillance system operates is usually severely nonsta-
tionary and nonhomogeneous. Besides, the computation load can easily become unbearable in

practice since it is proportional to (N,NV;)®. One should also note that lowering N, and N, is not




necessarily desirable in practice as the performance potential critically depends on them if the
angle-Doppler spectrum of the clutter/interference is complicated.

A much more popular approach to space-time processing can be classified as cascade processing
with either the beamformer-Doppler processor configuration or the opposite order configuration.
In this paper the former will be called the Space-time (S-T) configuration and the latter the Time-
Space (T-S) configuration. Obviously the optimum detection theory can be applied separately
to both spatial and temporal parts of both S-T and T-S configurations, together with various
adaptive algorithms available for each part. Of course, the convergence rate and computation
load problems associated with adaptive implementation of the joint-domain optimum processor
also appear with the cascade configurations, only to a lesser extent. When the convergence
does occur, the performance of an adaptive implementation with the S-T (T-S) configuration
should approach that of the optimum processor witn the same configuration. Cascade processing,
especially the S-T configuration, has been so popular in recent years that it seems to replace the
joint-domain processor in the airborne surveillance application. Moreover, arguments can often
be heard about which cascade configuration has higher detection performance potential.

The first objective of this chapter is to show that

(1) neither of the two cascade configurations is better than the other, and

(2) the performance potential of both cascade configurations can fall far below that of the
joint-domain optimum processor. In other words, we show that if one wants to approach the
highest performance potential offered by the joint-domain optimum processor, both cascade
configurations should be avoided.

As pointed out earlier in this section, it is diffici « in practice to approach the performance
potential of the joint-domain optimum processor with the straightforward application of adaptive
algorithms such as the SMI, Modified SMI, GLR, etc., especially in a severely nonstationary and
nonhomogeneous environment, even if the heavy real-time computation could become affordable.
Therefore, the second objective of this chapter is to develop a new adaptive algorithm for the
joint-domain optimum processor, which should be much more data-efficient and computationally
efficiznt than the aforementioned ones. This new algorithm is an extension of our recent work
reported in (7, 8] for adaptive Doppler-domain processing.

This chapter is organized as follows. We will first formulate the data model in Section 2.2,

In Section 2.3 we will compare the performance potentials of the cascade and joint-domain




processors. The new adaptive algorithm for the joint-domain optimum processor is presented
in Section 2.4, together with its performance analysis and comparison. Finally, Section 2.5

summarizes the conclusions with some discussion of relatcd issues.

2.2 Data Modeling

Consider a narrowband antenna array with N, spatial channels (subarrays). Each channel
receives N; data samples corresponding to the return of a train of N, coherent pulses for a given
range cell. Let the column vector x¢,, Vi x 1, represent the N; baseband complex (I/Q) data

samples of the n,th channel. The data matrix X, N; x N,, is defined by

[ 1
xal
T
X2 .

X = [x“ X2 .. xtN.] = N (2.1)
T
xaN‘

where “T™ denotes the transpose, and the row vectors of X, x,Tm,nt = 1,2,...,V,, are the

“snapshots” obtained along the spatial channels.

Under the signal-absence hypothesis Ho, the data matrix X coasists of clutter/interference

and noise components only, i.e.,

where C and N represent the clutter/interference and noise, respectively , and are assumed to be
independent. Under the signal-presence hypothesis H,, a target signal component also appears

in the data matrix, i.e.,

X=aS+C+N (2.3)

where a is an unknown complex constant representing the amplitude of the signal and S the
signal matrix of a known form. We call X the primary data set as it is from the range cell under
the hypothesis test.

For simplicity of discussion only, we assume that the spatial channels are colinear, identical,
omni-directional, and equally spaced with spacing d; and that the pulses of the coherent pulse

train are identical with a constant Pulse Repetition Frequency (PRF). Under these assumptions,



the n,n,th entry of the signal inatrix S has the following form

8(n¢,n,) = exp[i2n(n, — 1)/-\—3;—15 + 12m(n, — l)ds;n o], (2.4)

where v is the radial velocity of the target, 4 the direction of arrival of the target-return planewave

with respect to the broadside of the array, and A the radar wavelength. Denoting

2v

fo = 3PRF (2.5)
as the “normalized Doppler frequency” of the target signal, and
dsin 0
fu==— (2.6)
as the “spatial frequency”, S can be expressed by
S = Sg‘ ® s, (2'7)
where ® is the Kronecker product, and
8; =[1 exp(i2nfy) .. exp(i2n(N;— l)f,g)]T (2.8)
and
s, =[1 exp(i27fs) ... exp(i2m(N, —1)f,s)]F (2.9)

are the signal vectors in time and space domains, respectively. We assume that the parameters
PRF, A, and d have been properly chosen so that f, and f,, are confined within [--0.5, 0.5].

To statistically characterize the clutter/interference and noise components C and N, we in-
troduce the notation Vec(-) for a matrix operation that stacks the columns of a matrix under
each other to form a new column vector. We assume that the NN, x 1 vector Vec(C + N) has a
multivariate complex Gaussian distribution with zero mean and a covariance matrix R. Under
this assumption, X¢n,, s, = 1,2, ..., N, and Xgn,,n¢ = 1,2,..., Ny will also be complex zero-mean
Gaussian. Let R; and R, be the covariance matrices of x;,, and X,n,, respectively. It is easy to
see that R, and R, are the submatrices of R.

In the cases of unknown clutter/interference statistics, the daia from the adjacent range cells,

conventionalily referred to as the secondary data set, are also needed for estimating the covariance




of clutter/interference. Under both H, and Hy, they consist of the clutter/interference and noise

components only, and they are denoted by
Y, = Ci + Ny, N x N,, k=12,..,K (2.10)

where K is the number of range cells available. We assume that Y,k = 1,2,...K and X are
independent of each other and bear the same clutter/interference statistics, i.e., Vec(Yx) should

also have a complex-Gaussian distribution with zero mean and a covariance matrix R.

2.3 Difference among The Performance Potertials of The Cascade
and Joint-Domain Processors

We will compare the detection performance potentials of the two cascade configurations and
the joint-domain processor under the assumption that the clutter/interference-plus-noise covari-
ance matrix is known. With the known covariance, the Space-Time (S-T) configuration is the
N,th-order optimum spatial processor followed by the N;th-order optimum temporal (Doppler)
processor, the Time-Space(T-S) configuration takes the opposite cascade, and the joint-domain
processor is the N, N;th-order optimum processor. Applying the result in {1] to the above three,
we list the optimum weight vectors below for easy reference.

The S-T Configuration: we have

W,amt = Cs 0t RS, (2.11)

for the spatial domain weight vector, and
Wis—t = ct,s—t[(wf,-t ® DR(W, . @ I)]'s, (2.12)

for the temporal domain weight vector, where ¢, ,..; and ¢;,-; are constants. We recall that R,
and R, are the covariance matrices for the rows and columns of X, respectively; and s, and s;

are specified by Eq.(2.8) and Eq.(2.9). The test statistic is

Na-t = wgi'l,-txw:',_g- (213)
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The T-S Configuration: we have
Wit-s = Crt-aR7 8 (2.14)
and
Wotes = Cotms[(I® WiE_,)R(I® Wy—,)] s, (2.15)

for the temporal and spatial weight vectors, respectively. The test statistic is

Nes = Wee_ Xw} (2.16)

[RLT M

The joint-domain optimum processor: the whole set of the data is processed all together by

an optimum weight vector as
ns = wiVec(X) (2.17)

where w is
wy =cyR™! (2.18)

with ¢; being a constant scalar.

One should note that the overall weight vectors for the two cascade configurations can have

the following equivalent expressions
Wia_t = Wy st ® Wit (219)

and

Wios = Wy ity ® Wii—s- ('220)

The squared magnitude of the test statistic is compared with a chosen threshold 5o which is

determined by the required probability of false alarm P; as
o = — In Py; (2.21)

and the signal presence is claimed if the test statistic surpasses the threshold.

From the result in [1], the probability of detection of the above three processors has the same




form below with their own weight vectors, i.e., w,_y, wy_,, and w; to replace w therein

o
Pu=1-exp(~7) [" exp(~t)lo(2vFD)dt (2.22)
where .
S whHggHw
7= |a[‘——-——-——-—w”Rw (2.23)

and Io(-) denotes the zero-th order modified Bessel function of the first kind.
The key to achieving the objective of the comparison easily is to identify few typical cases,
from the vast number of varieties of clutter/interference conditions, which are also simple enough

for numerical evaluation. To do so, the following specifics are necessary.

(1) The covariance matrix of the receiver noise is given by
E(Vec(N)Vec(N)H) = 021 (2.24)

with I being the NN, x N N, identity matrix.

(2) The clutter/interference is assumed to have a two-dimension power

spectral density of the Gaussian shape centered at [f.:, fes)

_((ft - fct)2 + (fa — fct)z )] (2.25)

204, 202,

1 ' Pc(ftafa)= 2_—1——'exp[

o
C2mo g0y,

where f; and f, are the normalized Doppler frequency and spatia. fre-
quency, respectively, and oy, and oy, the parameters controlling the
spread of the clutter/ interference spectrum. The separation between
the signal and the center of the clutter/ interference spectrum is de-

noted by Afy = for — for and Af, = fog — fea-

(3) The covariance of the clutter/interference corresponding to the above

spectrum is then found to be

E(Vzc(C)Vece(C)H) = 02C, ® C, (2.26)
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where C, and C, are Toeplitz matrices specified by

C, = Toeplitz{[1 e=2mop)’=nfer | o=3(rep(Ne-1))P=i(Mi-1)Imfu]}
(2.27)

and

C, = Toeplita{[l e 2(rorof'=i2nfes  o=2mesa(Ne=D)P=ilNu=-1)2ner]}
(2.28)
respectively. It is easy to verify that (1) and (3) will lead to R; =
03C; + ol and R, = 02C, + 031

We define the clutter/interference-to-noise-ratio (INR) and signal-to-clutter/interference-plus-
noise-ratio (SINR) by
2
06
INR = el (2.29)
and
|of?
(02 +02)

Three simple cases are identified below in each of which at least one of the cascade configura-

SINR = (2.30)

tions suffers severe performance degradation, i.e., significantly departing from the joint-domain
optimum.

Case 1. The signal and interference are “well” separated in the angle demain (in the sense
that Af, > 1/N,) but close to each other in the Doppler domain (Af; < 1/N;). This situation is
shown in the subplot in Fig. 2.1. The detection performance vs. SINR for the three processors
are plotted in Fig. 2.1 with INR=40 dB and P; = 107°. The S-T configuration shows almost
the same performance potential as the joint-domain optimum in this special case, while the
performance loss for the T-S configuration becomes significantly large.

Case 2. The signal and interterence are “well” separated in the Doppler domain but close to
each other in the angle domain, as indicated by the subplot in Fig. 2.2. The T-S configuration
is now close to the joint-domain optimum while the S-T configuration departs significantly.

Case 8. The clutter/interference spectrum has two peaks with one close to the signal in the
angle domain while the other in the Dopoler domain. In this case both cascade configurations
fail to approach the joint-domain optimum, as shown iz Fig. 2.3.

The above three cases are typical in the sense that we can draw from them the following
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conclusions:

(1) neither of the two cascade configurations is better than the other, and

(2) the performance potential of both cascade configurations can fall far below that of the
joint-domain optimum processor.

Intuitively the above conclusions are also well justified. The T-S configuration in Case 1
suppresses the signal as well as the clutter/interference as they have little separation in the
Doppler frequency domain, so does the S-T configuration in Case 2 in the angle domain. As both
Case 1 and Case 2 can appear in practical situations without apriori knowledge, preselection of
either cascade configuration is thus not appropriate. In Case 3 the signal and clutter/interference
have little separation in either of the two domains, which results in the failure of both cascade
configurations. However, the separation in the joint domain in Case 3 is still sufficiently large to
lead to the success of joint-domain optimum processor. As an airborne system has to deal with
clutter/interference having both angle and Doppler spectral spread, it is thus important to make
full use of the signal-clutter/interference separation, which cannot always be achieved by either
of the two cascade configurations.

Although our study so far in this chapter is centered around the detection performance poten-
tials, i.e., under the assumption of known clutter/interference statistics, it is sufficient for us to
direct our attention only to the adaptive implementation of the joint-domain optimum processor,
since the two cascade configurations have been shown to have limited potentials. This will be
the focus of the remaining part of this chapter. Before we proceed, we should point out that,
in addition to the problem of limited potentials, the two cascade configurations may have other
serious problems of practical importance which are associated with their adaptive implementa-
tions, e.g., the difficulty to achieve a high-quality Constant False Alarm Rate (CFAR). This issue

will be briefly discussed later in Section 2.5 to preserve the continuity of our main course.

2.4 The Joint-Domain Localized GLR Algorithm

As pointed out in the introduction, the straightforward application of available adaptive algo-
rithms such as the SMI, Modified SMI, and GLR, etc., has considerable difficulty to approach
the joint-domain optimum processor in practice, especially in severely nonstationary and non-
homogeneous environments. Our goal here is to develop an adaptive implementation which is
more data-efficient (in the sense of faster convergence/requiring fewer training data) as well as

more computationally efficient. In addition, it is highly desirable in practice to have the adap-
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tive algorithm possess an embedded CFAR feature and a low sensitivity to the deviation of the
clutter/interference distribution from the assumed Gaussian.

To achieve the above goal we will follow the idea of localized adaptive processing as presented
in [7, 8] for adaptive MTD. Although this idea is similar to that of beam-space processing in
[9, 10, 11] under the term of partially adaptive array processing, the work in [7, 8] distinguishes
itself from the previous study on beam-space processing in the following ways. References (7, 8]
are the first to point out that for the cases of the limited training-data size the use of localized
adaptive processing is almost mandatory, and they have shown that localized adaptive processing
can actually outperform fully adaptive processing in nonstationary and nonhomogeneous envi-
ronments. Furthermore, References (7, 8] are also the first to study localized adaptive processing
with the detection performance measure, which is of course the primary concern of surveillance
systems. In contrast, the previous work on beam-space processing focuses on the steady state
performance and uses the signal estimation performance measure. As the primary concern of
this paper is again detection in severely nonstationary and nonhomogeneous environments, it
is natural to follow the work in [7, 8]. Of course, the extension represents a nontrivial task as
indicated by the complexity of the joint angle- Doppler domain.

As discussed in [7, 8], the localized processing idea can b applied with a variety of adaptive
algorithms such as the SMI, Modified SMI, and GLR. We will again pick up the GLR because
it offers the desirable embedded CFAR feature as well as possesses the desirabie robustness in
non-Gaussian clutter/interference [5, 6]. Hence, the new algorithm presented in this section will

be called the Joint-Domain Localized GLR (JDL-GLR).
2.4.1 The JDL-GLR Principle

Figure 2.4 illustrates the principle of the JDL-GLR processor we propose. The data in the
space-time domain, X, V; x N, is first transformed to the angle-Doppler domain. This multi-
dimensional transform should be invertible to avoid any information loss, and it can be done
most conveniently via the standard two-dimensional DFT (which is linear and orthogonal) under
the assumption made in Section 2.2 for the spatial channels and pulse train. One should note
that the gaussianarity assumed for X will not be affected if the transformation is linear. The
angle-Doppler domain data matrix X, N; x N,, represents the data at the N; Doppler-bins and
N, angle-bins of the range cell under the hypothesis test. The same transform is also performed

on the secondary data Y,k = 1,2,..., K, where K is the number of adjacent iid cells, to obtain
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the angle-Doppler domain secondary data Yy, Ny x N,k = 1,2,.., K.

In practice, only the few angle-bins covering the angle section centered at the broadside of the
array (i.e., around the look direction where most of the transmitted energy is contained) need
to be tested, while at most all Doppler-bins should be tested as the target Doppler frequency
shift is unknown to the processor. Let N,o be the number of angle-bins of interest. The N; x N,
bins to be tested will be divided into L groups, each of which contains /NV,, angle-bins and a
small number of adjacent Doppler-bins. An example for this grouping is given in Fig. 2.5 where
Ny =24,N, = 12, and N,o = 3. We note that the number of Doppler-bins in each group needs
not be the same and that some overlap can also be justified. The purpose of dividing along the
Doppler axis is to avoid the use of an adaptive processor with large degrees of freedom, which
demands a large training-data set as well as a large amount of computation. This opportunity
of “divide-and-conquer” is, of course, made available by the multidimensional transformation
from the space-time data domain to the angle-Doppler domain, which decouples the degrees of
ireedom necessary for handling complicated clutter/interference, from the number of data points
to be processed. Based on our experience gained from the work in [7, 8], the number of bins in
each group is expected to have only minor influence on the detection performance and should
be in the range of 2 X N, ~ 4 X Ny in general. The angle-Doppler domain secondary data
Vi, k=1,2,..., K should be grouped in the same way.

Let Ny be the number of Doppler-bins and N, == Ny x Ny the total number of angle-Doppler
bins in the /th group. An Njth-order GLR processor will perform the threshold detection on the
N; bins of the [ th group with the test statistic
|[Vec(S))H R Vec(X)? 3.0

() _ ]
T Ve SD AR WVed ST [1 + Vec(X P )R Vec(X))] 5o

n=12,..,.Ng m=12,..,Nyg (2.31)

where K
R; = Y Vec(Yu)Vec(Vu)", (2.32)

k=1
and S | Ny x Ny, is the signal-steering matrix in the angle-Doppler domain for the nmth bin

of the Ith GLR. For a uniform PRF and array spacing, it is easy to see that Sff,)n has all its
entries equal to zero except the nmth one which is v/N;N,. We note that the threshold n(()l) need

not be the same across the L groups as evidenced in Subsection 2.4.2 below.
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2.4.2 The JDL-GLR Detection Performance

The detection performance of the original GLR in Gaussian clutter/interference is given in
(3, 4] with deterministic modeling and in [12] with stochastic target modeling. As for the Doppler
domain localized GLR of (7, 8], it is straightforward to extend the results in [3, 4, 12] to obtain
the probabilities of detection and false alarm, P; and Py, of the JDL-GLR with both target
models. Below we just list the results for the case of non-fluctuating targets with the trivial

derivation omitted.
The probability of detection at the nmth bin of the Ith GLR is found to be

P{(n,m) = / P (n, m) £, (p)dp (2.33)
where
K-Ni+1| K~ N, +1
Pip(n,m) = 1= (1 - pf))K-Nett " 3
k=1 k
0 \* 0 (Dym
e~ (D (g B (1 —n
x | ) et ’E  [efen o )|, (2.34)
1 - Mo m=0 m!
(” (K)! F-Ni+17q9 _ \N;—2 o
nlo) = (K =N, + (v =2)° 1 =p)", (2.35)
and
BN = |af? Vec(S(’) YRS ‘Vec(S(‘) ), (2.36)

with R being the covariance matrix of Vec(X;).

The probability of false alarm for all bins in the Ith GLR is given by

i - v
P = (1 — pflyK-Nest, (2:37)

Obviously the probability of false alarm can be made equal across the L groups by choosing
different 170),1 =1,2,...,L. Eq.(2.37) also clearly in dicates that, like the original GLR and the
Doppler-domain localized GLR, the JDL-GLR has the “integrated/embedded” CFAR feature as

P(‘),l =1,2,..., L do not depend on the covariance of the clutter/interference.




2.4.3 Detection Performance Comparison

Although the cunvergence-rate advantage of the JDL-GLR can be seen intuitively from the
fact that the localized GLR’s have much lower degrees of freedom than a high-order GLR directly
applied to the space-time domain data, the numerical example below should demonstrate this

advantage clearly.
Consider a system with N, = 12 and N; = 24. The clutter/interference is assumed to have
the two-dimensional multipeak Gaussian-shaped power spectrum density (psd) as shown in Fig.

2.6. For convenience of reference we have also indicated the center locations of this multipeak

spectrum in Fig. 2.5. The exact expression of this psd is given by

6 _ _ 2
Pifof) = 3 otymt— expl— (= Jed)” | (o = Jeua)y, (2.38)

~ om0 40y, 20’}: 20},

where o2, is the power of the dth component. Obviously, the total clutter/interference powe. o2
is
6
ol=Y ol (2.39)
d=1
We set 02 = 0% = 0% = 0% = 0% = 0%/10%%, INR=50, and SNR=0dB which gives SINR
~-50dB. The thresholds for the processors to be compared are such that every processor has
a probability of false alarm P; = 10~% at each tested bin. We assume that there are K = 24

adjacent cells from which the iid secondary data set is obtained.

Consider the following five processors:
(1) the joint-domain optimal,

(2) the JDL-GLR with L = 7 localized GLR processors with their

coverage shown in Fig. 2.5,
(3) the T-S configuration with the optimal processor for each part,

4) the S-T configuration with the optima' processor for each part,
g p

and

(5) a conventional beamformer followed by the optimal temporal pro-

cessor (i.e., the optimal MTI).




Figure 2.6. Two dimensional power spectral density for the clutter/interference used
in the example.
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We note that with N, = 12, N; = 24 but K = 24 only, any straight{forward adaptive imple-
mentation of the joint-domain optimal, any adaptive processor with the S-T configuration, and
any adaptive processor with the T-S configuration will fail to deliver an acceptable detection
performance for this example since K = 24 is too small with respect to their degrees of freedom.
Therefore, these adaptive processors are excluded from the above list for detailed comparison.
Fig. 2.7 shows the probability of detection of the five processors listed at the 6th angle bin
which is the assumed angle of arrival of the target signal. Obviously, the JDL-GLR is the only
one that approaches the joint-domain optimal, except at few bins adjacent to the center of the
strongest clutter/interference spectrum component. The poor performance of the two optimal
cascade configurations should not be a surprise from the discussion in Section 2.3. The fact shown
in Fig. 2.7 that the ad. hoc processor of No. 5 can outperform them (especially the optimal 5-T
conﬁgu;‘ation) is also a strong evidence that the optimality does not always mean much with a
wrong configuration. Of course, the poorest performance of the optimal S-T configuration is due
to the fact that the optimal spatial part of processing nulls the clutter/interference as well as the
target signal. Finally, we comment that a CFAR loss is inevitably associated with any adaptive
implementation of the four optimal/partially optimal processor in Ilig. 2.7, while the embedded

CFAR feature of the JDL-GLR makes any other additional CFAR processing unnecessary.
2.4.4 Other Features of JDL-GLR

The computation advantage of the JDL-GLR is clear. Recall that the N-th order GLR has a
computation load proportional to N3. Assume that each localized GLR spans three angle-bins
and four Doppler bins and that N;/4 localized GLR are required. This leads to a computation
load proportional to (N;/4)(3 x 4)*® = 432V, for the JDL-GLR. With a load of N2N3 for the
straightforward application of the GLR to the space-time domain data, the JDL-GLR will show
a coriputation advantage when N; > 4 and N, > 3. For large N; and N, the JDL-GLR offers .

computation load reduction by a factor of
v = NIN3/432. (2.40)

For the example of NV, = 24 and N, = 12 in this section, the JDL-GLR’s computation loau
is only 1/2304 of that for the straightforward application of the GLR (cr SMI) to the space-
time domain data. Like the Doppler-domain localized GLR in {7, 8], the JDL-GLR can further

reduce its computation load via deleting the localized GLR processors for the region where the
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Figure 2.7. Detection performance comparison of the five processors.
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detection performance improvement is unnecessary or irnpossible. This can be done when some
upriori information is available about the power concentration of the clutter/interferencs in the
angle-Doppler domain. Furthermore, the realization of the JDL-GLR benefits from the available
parallel processing techniques as its localized GLRs all opcrate in purallel.

Since the robustness feature in non-Gaussian clutter/interference resides with the GLR proces-
sor which will not be affected by the linear transformation, the JDL-GLR is expected to maintain
its robustness. Computationally intensive simulation is being conducted to confirm this feature

and the result will be published separately [13].

2.5 Conclusions and Discussion

This chapter shows:

(1) neither of the two cascade configurations is better than the other;

(2) the performance potential of both cascade configurations can fall far below that of the
joint-domain optimum processor; and

(3) the Joint-Domain Localized GLR algorithm (JDL-GLR) offers an attractive solution to
the problem of approaching the performance potential of the joint-domain optimum processor of
a high order (N, x N;) with a fast convergence rate and high computation efficiency, together
with such highly desirable features as the embedded CFAR and robustness in non-Gaussian
clutter/interference.

Finally, we would like to point out that both cascade configurations may have counsiderable
difficulty to achieve a high qrality CFAR in practice when both spatial and temporal parts are
adaptive. This is because of tl e random modulation introduced by the adaptive algorithm for
the early part of the cascaded two parts. The problen. may become more severe in highly non-
stationary and nonhomogeneous environments where there is a shortage of a sufficient amount
of iid training data to smocth out the extra random modulation. In contrast, the JDL-GLR
presented in this chapter is t-ee of such random modulation and can maintain its CFAR per-

formance with a much smaller amount of iid training data. Simulation-based comparison of the

CFAR performance of adaptive spatial-temporal processors, can be found in [13].




Chapter 3

Literature Review on Spherically
Invariant Random Processes

3.1 Introduction

We present an overview of the literature as it pertains to the modeling of radar clutter by
spherically invariant random processes. In addition, relevant mathematical preliminaries are
presented in this chapter. When a radar transmits a signal, the received echo may consist of
returns from one or more targets, buildings, trees, water, land and weather depending on the en-
vironment. The target returns contribute to the desired signal while the other returns contribute
to the clutter. Many investigators {14, 15, 16, 17] have reported experimental measurements
for which the clutter probability density function has an extended tail. The extended tail gives
rise to relatively large probabilities of false alarm. The Gaussian model for the clutter fails to
predict this behavior. Two approaches have been used to explain the non-Gaussian behavior.
One of them is based on the fact that the assumptions under the central limit theorem (CLT)
may fail. The other approach is based on the nonstaticnary reflectivity properties of the scanned
areas. In any event, non-Gaussian models for the univariate (marginal) clutter PDF have been
proposed. Commonly reported marginal non-Gaussian PDF's for the clutter are Weibull [14],
Log-normal [18, 19] and K-distributions [16, 20, 15]. Second order statistics for these models
have been reported in terms of autocorrelation functions or power spectral densities [21, 17].

The Weibull [14] and Log-normal [15] models for radar clutter are primarily based on empirical
studies, while the K-distribution has been shown to have physical significance [22, 15] in that

the observed statistical properties can be related to the electromagnetic and geometric factors
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pertaining to the scattering surface. Computer simulation schemes for Weibull and Log-normal
clutter based on the univariate PDFs and correlation functions have been developed in [23] and
[24], respectively. Extension of the Weibull and Log-normal and K-distributed clutter models for
coherent radar processing have been developed in [25, 18, 26] respectively.

Statistical characterization of the clutter is necessary in order to obtain the optimal radar signal
processor. Usually, radars process N pulses at a time. A complete statistical characterization
of the clutter requires the specification of the joint probability density function (PDF) of the
N samples. When the pulse returns are statistically independent, the joint PDF is simply the
product of the marginal PDFs. However, the clutter can be highly correlated. In fact, the
correlation between samples is useful in canceling the clutter. Consequently, it is desirable to
include the correlation information in the multivariate PDF. For non-Gaussian processes this
can be done in more than one way. The theory of spherically invariant random processes (SIRP)
provides a powerful mechanism for obtaining the joint PDF of the N correlated non-Gaussian
random variables. Applications for the theory of SIRPs can be found in the problem of random
flights [27], signal detection and estimation problems in communication theory [28, 29], speech
signal processing [30, 31], radar clutter modeling and simulation [32, 26, 33, 34, 35]. The following

sections provide a brief overview of literature on the theory of SIRPs.

3.2 Definitions

In this section we present certain definitions and mathematical preliminaries pertaining to the
theory of SIRPs. A random vector Y = [Y}, Y2, ..., Yw]7 is said to be a spherically invariant
random vector (SIRV) if its PDF has the form

x(¥) = k|Z["5hn|(y - b)TE(y - b)] (3.1)

where k is a normalization chosen so that the volume under the curve of the PDF is unity,bisa N
by 1 vector, X is a N by N non-negative definite matrix, and hy(.) is a one dimensional, positive,
real valued monotonically decreasing function. Note that the PDF of an SIRV is elliptically
symmetric (i.e., constant contours of fy(y) are composed of ellipses). If every random vector
obtained by sampling a random process y(t) is a spherically invariant random vector, regardless
of the sampling instants or the number of samples, then the process y(t) is defined to be a
spherically invariant random process (SIRP).

Kingman [27] introduced the definition of spherically symmetric random vectors (SSRV). In
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particular, a random vector X = [X;, Xa, ... Xn]T is said to be spherically symmetric provided
its PDF has the form

fx(x) = khy[(z? + 23 + ... + 23)¥] = khn(xTx) (3.2)

where hy(.) is an arbitrary, non-negativef, monotonically decreasing radial function of dimension
N and k is a normalization constant chosen so that the volume under the curve of the PDF
is unity. The subscript N is used to emphasize that we are dealing with N random variables.
Throughout the manuscript, it is assumed that the PDF of a random vector is the joint PDF of
its components. Equivalently, if w = [w;, wg, ...,wn]T, the characteristic function of the SSRV
X defined by ®x(w) = Elezp(jwTx)], has the form

Ox(w) = gnl(w] +w] +... +wi)}] (3.3)

where gn(.) is a non-negative conjugate symmetric function which is magnitude integrable. An
SSRYV is a special case of an SIRV, arising from eq (3.1) when b = 0 and ¥ = I where I is the
identity matrix. In Appendix A, we prove that the characteristic function of an SSRYV is also

spherically symmetric.

3.3 Characterization of SIRPs
In this section we present some important theorems that help us to characterize the PDF of a
SIRV. The work of Yao [28] and Kingman [36] gave rise to a representation theorem for SSRVs.

The representation theorem can be stated as follows.

Theorem 1 If a random vector X = [X;, Xz, ... Xn|T is an SSRV for any N, then there exists
a non-negative random variable T' such that the random variables X;, (i = 1,2,... N) conditioned

on T =t are independent, identically distributed, Gaussian random variables with zero mean and

variance equal to 2t.

Proof: By definition, the characteristic function of X is

®x(w) = Elexp(jwTX)] 34)

= f—oooo e f—oooo ezp(ijx)fx(x)dx.
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The PDF on the random variable T is introduced by noting that

fx(x) = [25, fxr(x,t)dt

= [ fxr(x|t) fr(t)dt.

(3.5)

Substituting into the expression for the characteristic function and interchanging the order of

integration we obtain
x(w) = [ Exr(w,t)fr(t)dt (3.6)

where

Oxir(o, )= [ ... [ eaplju™) frir(xlt)ax. 37

Since X is an SSRV for any N, its characteristic function has the form of eq (3.3). This requires
that ®xr(w,t) also be a function of (w] + wj + ... + w}) for any choice of N. The only

characteristic function having this property [36] is
Oxy(w, ) = exp[~t(w] +wi + ... +w})] (3.8)

where the conditional PDF of X, given T = ¢, is recognized to be multivariate Gaussian, with
Xi, (1 =1,2,...,N) being statistically independent identically distributed, zero mean Gaussian
random variables with variance 2¢. Because the variance equals 2¢, T must be a non-negative
random variable. This establishes the theorem. Note that the theorem does not give any physical
significance for T. Neither does it reveal how to determine fr(t).

The representation theorem for SSRVs allows us to write the random vector X as a product of
a Gaussian random vector Z having zero mean and identity covariance matrix and a non-negative
random variable § = V2T with PDF fs(s). In particular, consider the product X = ZS. S is
assumed to be non-negative for convenience. The PDF of X conditioned or S is then given by

’

fxis(x|s) = (2m)~¥s~Neap(- £7) (3.9)

where p' = xTx. From the theorem on total probability, the PDF of X can be written as

fx(x) = @)% [ s Neap(— Lo fs(s)ds. (3.10)
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Comparing eqs (3.10) and (3.2), we can write k = (2r)~#% and
N [P N P .
hn() = [ 5N ezp(—E) fs(s)ds. (3.11)

Thus, it is clear that the PDF of an SSRV is uniquely determined by the specification of a

Gaussian random vector having zero mean and identity covariance matrix and a first order PDF

fs(s) called the characteristic PDF.
The following theorem in {37] states that a SIRV is related to an SSRV by a linear transfor-

mation.

Theorem 2 If X is an SSRV, with characteristic PDF fs(s), then the deterministic linear

transformation

Y =AX+b (3.12)

results in Y being an SIRV having mean vector b, covariance matriz ¥ = AAT and the same

characteristic PDF. It is required that AAT be nonsingular.

Proof: Since X is an SSRV, we can express X as X = Z5, where Z is a Gaussian random vector

having zero mean and identity covariance matrix and S is a non-negative random variable. Hence,
Y =AZS +b. (3.13)

Conditioned on §, the PDF of Y is Gaussian, with mean vector equal to b and covariance matrix

equal to AATs2, The PDF of Y conditioned on § is given by

Fris(yls) = (2m) ¥ |B| 35 Neap(-57) (3.14)

where p = (y — b)TZ-!(y — b) and |X| denotes the determinant of the covariance matrix ¥ =

AAT, Using the theorem on total probability, the PDF of Y can be written as
fe(y) = @m) 32 b hn(p) (3.15)

where

hn(p) = /Om s'Newp(—-z-I—;;)fs(s)ds. (3.16)
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The PDF of Y is of the form of eq (3.1). Therefore, Y is an SIRV. The PDF of an SIRV is uniquely
determined by the specification of a mean vector, a covariance matrix and a first order PDF called
the characteristic PDF. Theorem 1 for SSRVs generalizes for SIRVs in a straightforward manner.
The only difference is that conditioned on the non-negative random variable T, the {Y, : (k =
1,2, ... N)} are no longer statistically independent. Instead, the PDF of Y conditioned on T is
a multivariate Gaussian PDF. By the same argument used for SSRVs, an SIRV can be written as
a product of a Gaussian random vector and a non-negative random variable. The only difference
is that the mean of the Gaussian random vector need not be zero and its covariance matrix is not
the identity matrix. As a corollary of Theorem 2 [28], it can be readily shown that every linear
transformation on an SIRV results in another SIRV having the same characteristic PDF. As a
special case, when fs(s) = 6(s —1) where §(.) is the unit impulse function, hx(p) = ezp(—£) and
the corresponding SIRV PDF given by eq (3.15) is the multivariate Gaussian PDF. Therefore,
the multivariate Gaussian PDF is a special case of the SIRV PDF.

The following theorem from [29] provides an interesting property of SSRVs when represented

in generalized spherical co-ordinates R € (0,00), © € (0,27) and &, € (0,7), (k=1,... N--2).
Theorem 3 When the components of the random vector X = [X; ... Xn]T are represented in
the generalized spherical coordinates given by

X1 = Rcos(®,)

Xi = Rcos(®x) [T} sin(®;) (1<k<N-2)

i=1 (3.17)
Xn-1 = Rcos(©)[IN:?sin(®;)
Xn = Rsin(©) [T¥;?sin(®;),
X is an SSRV if and only if R, © and ¥, are mutually end statistically independent random
variables having FDFs of the form

fr(r) = g (r)u(r)

'r(4)
fou (k) = 5%‘%&'%-1-*(@,)@(@) — u(dx — )] (3.18)

Jo(8) = (2m) 7 [u(6) — u(8 — 2r)]

<3
d




where I'(.) is the Eulero Gamma function and u(.) is the unit step function.

Proof: Since the random vector X is an SSRV, its PDF is of the form of eq (3.2) with An(p')
being given by eq (3.11). The Jacobian of the transformation given by eq (3.17) is obtained in
(38] as
N-3
J = (R T sinV=17%(¢)) . \ (3.19)
k=1

Using eq (3.2) and eq (3.19) and noting that R? = TN, X2, the joint PDF of R, © and &, (k =
1,2,...N —2) becomes

TN—l N-2
frRee,. . ona(r0,01...¢Nn-2) = (—2W—)§-hN("2) IT sin®™*(¢x) (3.20)
k=1

Since the joint PDF in eq (3.20), can be written as a product of the marginal PDFs given
in eq (3.18), the variables R, © and ®;, are mutually and statistically independent with the
prescribed PDFs . In order to prove the sufficient part of the property, we start with the marginal
PDFs of R, © and ®, given by eq (3.18) and, under the assumption of statistical independence,
obtain the joint PDF of eq (3.20). Using the inverse Jacobian of that given by eq (3.19), results
in the PDF of X being given by eq (3.2).

3.4 Determining the PDF of an SIRV

In this section we shail present schemes for determining the PDF of an SIRV. We recognize that
the PDF of an SIRV is uniquely determined by the specification of a mean vector, a covariance
matrix and a characteristic first order PDF and that the SIRV PDF has the form of eq (3.15).
Several techniques are available in the literature for specifying hAn(p). The simplest technique
is to use eq (3.16). However, this procedure requires the knowledge of the characteristic PDF
fs(s). Therefore, when fs(s) is not known in closed form or it is difficult to evaluate the integral
in eq (3.16), alternate methods for specifying hn(p) must be examined.

To study the behavior of hn(p), it is convenient to replace p, which is a quadratic form

depending on N, by the dummy scalar variable w. We then write

hy(w) = /0 °° .s'Nea:p(—--;—:E) fs(s)ds. (3.21)
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When both sides of eq (3.21) are differentiated with respect to w, we obtain

dh;vu(,w) - _%f)w s..N-ﬂemp(__E'-:_n)fs(s)ds. (3.22)

The right hand side of eq (3.22) is related to hn4a(w) by the factor of ~1. Thus, we have an

interesting result pointed out in [32] that

vsaw) = (-2 2(2) (3.23)

Because
fe(y) = (2) |8 thya(p) (3.24)

when Y is of dimension N +2, it follows that hn(w) must be a monotonically decreasing function
for all N. Eq (3.23) provides a mechanism for relating higher order PDFs with those of lower
order. More precisely, starting with N =1 and N = 2, and using eq (3.23) repeatedly, gives the

following pair of recurrence relations.

haw41(w) = (--2)N4Shifu)
hansa(w) = (—2)NV Ehafw),

(3.25)

Therefore, starting from A, (w) and hy(w) all PDFs of odd and even order, respectively, can be
generated by the use of eq (3.25). However, since hy(.) is defined to be a non-negative mono-
tonically decreasing function for all N, h,(.) and ha(.) must belong to a class of functions that
are positive and monotonically decreasing. Consequently, their successive derivatives will alter-
nate between negative and positive functions that are monotonically increasing and decreasing,

respectively. Given hy(w), the N** order SIRV PDF is given by
fe(y) = (2n) %18 hn(p) (3.26)

where hy(p) is nothing more than hn(w) witn w replaced by p.
Another approach for specifying hn(p) that begins with the univariate characteristic function
has been proposed in (39, 28, 29]. It is required that the univariate characteristic function be a

real even function whose magnitude is integrable. Also, it is assumed that the components of
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the SIRV are identically distributed. Under these conditions, it has been shown that

hn(p) = (vp)'~ ¥ /o °°w‘3‘¢(w)Ju,-_a (wy/P)dw (3.27)

where ¢(w) is the univariate characteristic function and J,(n) is the Bessel function of order a.
Eq (3.27) has an elegant proof by induction which is presented here. From eq (3.15) it follows
that h;(p) is related to the first order SIRV PDF of the i** component. More explicitly, we can

write

fri(w) = (V2ro) " (p) (i=1,2,...N) (3.28)

where p; = %:- and ¢? is the common variance of the random variables Y; (3 = 1, 2, ... N). For

convenience, assume that o2 is unity. The univariae characteristic function is then given by

#w) = [ fulydesplivy)dy: (3.29)

Using the inverse Fourier transform and noting that y; = \/pi, h1(pi) can be expressed in terms

of the characteristic function as

ha(ps) = 71_2—”- [ ditw)ean(—joy/pdo. (3.30)

Since ¢;(w) is the same for all ¢, the subscript ¢ in eq (3.30) can be dropped. In addition, because

#(w) is an even function, we can rewrite eq (3.30) as

2 foo
hy(p) = \/; /0 H(w)cos(w/p)dw. (3.31)
Recognizing that cos(z) = %J__%(z), and replacing p by the dummy variable w, we have
h(w) = (Vo) [ whe(w)d_y(wv/i)do. (3.32)

Since the derivation makes use of eq (3.23) it is necessary to consider odd and even values of N

separately. For odd values of IV, eq (3.27) can be written as
han-1(w) = (V)iN /0 " WV g(w)ases (/i) doo. (3.33)

Equation (3.33) is now shown to hold for ail N by means of induction. With N = 1, eq (3.33)
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reduces to eq (3.32). It remains to show that eq {3.33) is valid when N is replaced by N + 1.
Differentiating both sides of eq (3.33) with respect to w, we obtain

PN 1(0) [ N-b g ) 2L (V)N Jatgea (/) o (3.34)

First, focus on the term £ ((/w) g"‘NJa_gr-_a_ (w+/w)). Since this involves the derivative of a product,

we can write

LIV T (/)] = 53 ~ MVE Tagea (0v) + (VRN o Jaes (o).

(3.35)
Using the identity [40] ao(n)
4al\n) _ & -
dﬂ - = nJa(”) Jo:+l(7l) (3'36)
we have J N
2N -3 -
ol i Vo) = SV g T (V) — Jugu (V). (337)
Substituting eq (3.37) in eq (3.35) gives
(VB Tates (/)] = ~ 2 (VDN St (/). (338)
Consequently, eq (3.34) reduces to
dhan.. 1 po[oo
D) o 2 [ o) Jugm (/D)o (3.39)

However, from eq (3.23) we know that hyny1(w) = (—2)1'-'-’%;-’—1'—”1. Hence, we have from eq (3.39)
hanver(w) = (Vo) i~V /0 WV (W) anes (/) o (3.40)

Because eq (3.40) is identical to eq (3.33) with N replaced by N + 1, it has been shown by
induction that eq (3.33) is valid for all N. It follows that eq (3.27)is valid for all odd values of

N.

In a similar manner, starting with hy(p), it can be shown that

hawsa(p) = /N /0 ” N $(w) Iy (wr/B)dw (3.41)

for all N. Note that eq (3.41) is identical to eq (3.27) with N replaced by 2NV + 2. The proof of
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this result is presented in Chapter 3. Thus, in general, for any N (odd or even), we can write

hn(p) as in eq (3.27).
3.5 Properties of SIRVs

In this section we present certain important properties of SIRVs.
3.5.1 PDF Characterization

The multivariate PDF of an SIRV as given by eqs. (3.15) and (3.16) is uniquely determined
by the specification of a mean vector b, a covariance matrix ¥ and a characteristic first order
PDF fs(s). The PDF involves a non-negative, real valued monotonically decrcasing function
hn(.) of a non-negative quadratic form. The type of SIRV is determined by the form of hy(.)
or, equivalently, the choice of fs(s). Higher order PDFs can be obtained by the use of eq (3.27)
whereas lower order PDF's can be obtained in the usual manner by integrating out the unwanted
variables. We discuss this procedure in Appendix A. The PDFs of all orders are of the same

type. The marginal PDFs are used to classify the type of SIRV.
3.5.2 Closure Under Linear Transformation

As shown in Theorem 2 of Section 2.3, every linear transformation of the form of eq (3.12) on
an SIRV results in another SIRV having the same characteristic PDF. This feature is called the

closure property of SIRVs [28, 29].
3.5.3 Minimum Mean Square Error Estimation

In minimum mean square error estimation (MMSE) problems, given a set of data, SIRVs are
four:d to result in linear estimators 39, 28, 41]. An interesting proof of this property is presented
here. Let Y = [Y17 Y27|T where Yy = [14, Yz, ... Yi]T and Y2 = Yy, Yimea, ... Ya]T denote
the partitions of Y. It has been pointed out in [42] that the minimum mean square error estimate

of the random vector Y2 given the observations from the random vector Y1, is given by
Y, = E[Y2|Y1) (3.42)

where E[Y2|Y1] denotes the conditional mean or the expected value of Yz given Y;. Assume
that Y is an SIRV of dimension N with characteristic PDF fg(s). Also, for convenience, it is

assumed that the mean of Y is zero. The covariance matrix of Y denoted by ¥ can be partitioned
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Cu Cia
%= (3.43)
Ca21 Cjz

where C11 denotes the covariance matrix of Yy, C13 denotes the cross covariance matrix of the
vectors Yy and Yg, Ca; is the transpose of Cy3, and Ca3 denotes the covariance matrix of the

vector Yg. The PDF of Y2 given Y, is expressed as

fyqivy (yaly1) = ﬁ% (3.44)
1

Recall from eqgs. (3.15) and (3.16) that

fy(y) = (27)~ ||t hy(p) (3.45)
where
hn(p) = /0 s~Nezp(—§!sl§) fs(s)ds (3.46)

and, assuming b = 0 p = y'X~'y. Note that the inverse covariance matrix can be partitioned

as [38]

- l=| (3.47)
CD

A = (C11 — C12C33C21)™?
B = —-AC12C;;
C = —-DC2Cj}

D = (Cz2 — C21C{1Ci12) .

Expanding the quadratic form, we have

p=yrAy: +yrByz +y3Cy1 + y3 Dyz.




Adding and subtracting y§ C7ly1 to the right hand side of eq (3.49) gives

p =y (A - Cilyr +yICiivi + yIBya + y1Cyir + y3 Dya. (3.50)
Note that
A - Cj] = --BC1Cj1. (3.51)
Hence,
p=yrCiiy1 - yTBCa1Ciiy1 + yrByz + y3 Cy1 + y3 Dya. (3.52)

However, it can be shown that
y3Cy1 = —yFTDCa1City1
YTByz = —~yTCi{C12Dyz (3.53)
~yfBC21Cilyr = y¥C11C12DC21 Ciiya
Making these substitutions in the expression for p, it follows that
p = y1Cily1+y3Dy2 —y3DC21Cy}y1 —yT €1} C12Dy2 + yT Cif C12DCa1 City1. (3.54)
This can be rewritten as
=yfC;l ~ C21C7ly1)’D(y3z - C21C72 3.55
P=y1Cliy1+ (y2 —~ C21C11y1)" D(y2 -- C21C1; y1) (3.55)

For simplicity, we define

P =YECiin
(3.56)

p2 = (y2 — C21C1iy1)TD(y2 — C21Ci ] y1).

Then
P =p -~ p2. (3.57)
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From eqs (3.57) and (3.44)-(3.46), we have

k 00 , -
Fearry0alys) = s [ o7 eap(=PE 2 (o). (3.58)

where k = (2r)~4|%|-}. Next, consider

E(YalY;) = vl(vﬂ [ e Nean(-£4) / yaeop(~L5)iyafs(s)ds.  (3.59)
Noting that
[, Yaeap(= 3 33)dya = (2m) T2 |D| A" " (CuCitya), (3.60)
gives
B(Y3|Y1) = le"(‘yl) [ smeon(= 2 s(s)ds (3.61)

where ky = (21r)"‘5l|2|‘%‘IDI“%[CnCﬁlyl]. When a matrix is partitioned as in eq (3.47), it is
known that [43]

i |Z| = |C11]|C22 — C21Cj} C12)- (3.62)
' Since
D = (Cz2 — C21C1; C12)7?, (3.83)
it follows that
|B| = |Cna|ID™Y (3.64)
Thus,
=7 = [Cuu YD) (3.65)

Hence, &; = (27)~ 2!011| 5[021011}'1] Finaily, since
fy,(n1) = (271')'19‘"'|Cu|—%/0 8"’"ezp(—~—-—)fs(s)ds, (3.66)

= E(Y2|Y1) = [C2:1 Ciiy1l. (3.67)

It is seen that the MMSE estimate of Y2 given the data Y is a linear function of Y;.

If the random vectors Y; 2nd Y2 have non-zero means denoted by by and bg respectively,
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then eq (3.67) takes the form
E(Ya|Y1) = bz + Ca1Cyj (y1 — ba). (3.68)

As a consequence of this property, when the random vectors Y; and Y3 are uncorrelated so

that Ca; = 0, then we have
E[Y3|Y1] = ba = E[Y3]. (3.69)

This property is referred to as semi independence in [39, 44, 28). However, for all SIRVs except
the Gaussian, this result does not imply that

Frgivy (yalyr) = fy,(yz) (3.70)

This emphasizes the property that although uncorrelatedness guarantees statistical independence

for Gaussian candom vectors, it is not a general property of SIRVs.
3.5.4 Dictribution of Sums of SIRVs

While it is true that the sum of two jointly Gaussian random vectors is also Gaussian, the
same is not true for SIRVs in general. This result holds for twe SIRVs when they are sta-
tistically independent, have zero mean and when the ccvariance matrix of the first is within
a multiplicative constant of the covariance matrix of the second (28, 29]. Mcre precisely, let
Y1 =Y, Yo, .. Yin)T and Y, = [Yay, Yoo, ... Yan]T denote two independent zero mean SIRVs.
The covariaice matrix and characteristic PDF of Yy are denoted by 1 and fs,(s;). The cor-
responding quantities for Yz are denoted by X2 and fs,(s;). We are interested in obtaining the

distribution of the sum given by
Y=Y;1+Y2. (3.71)

The characteristic function of Y is given by
Elezp(jwY)] = g1(wTS1w)g2(wT Saw) (3.72)

where g1(.) and g2(.) are the charactaristic functions of ¥y and Y3z, respectively. If Y is a z2ero

mean SIRV, then its characteristic function has the form

Elezp(jwY)] = g(wTSw). (3.73)
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In order to write eq (3.72) as a function of a single quadratic form, ¥3 must be within a multi-

plicative constant of ;.
3.8.8 Markov Property for SIRPs

An interesting property of SIRPs is that a zero mean wide sense stationary SIRP is Markov if

and only if its autocorrelation function has the form
R(ty, t2) = exp(—al(ts — 1]). (3.74)

This result is well known for the special case of a zero mean wide sense stationary Gaussian
random process. To demonstrate the more general result we consider N samples from a zero
mean wide sense stationary SIRP y(t). Let Y = [Y;, Y2 ..., Yn]7 denote the vector of successive

samples obtained from the SIRP.
Given that y(t) is a zero mean wide sense stationary Markov SIRP, we first show that its

autocorrelation function must have the form of eq (3.74).Let Y;, Y; and Y; denote the random
variables obtained by sampling y(t) at time instants ¢1, ¢, and 23 such that ¢; < ¢; < t3. Since
y(t) is a Markov process, the joint PDF of Y}, Y2 and Y3 can be expressed as

fri vy (Y1, 42, 93) = fri (91) fraiw (2091) fra v, (33l 92)- (3.75)
The autocorrelation function R(t3,t1) = E[Y3Y1] is given by
R(t3, t1) = /_oo /_Oo _/:_00 Yay1fv va,v: (41, Y2, y3)dy1dy2dys. (3.76)

Also,
Rita,ts) = BIYf) = [~ y3fu(u)dyn (377)

Hence,
R(t37tl)R(t21t2) =./_'.°o .[-oo ./:-oo [_oo y3ylfY1.Y2.Ya(y1’y2i y3)dy1dy2dy3ygfyz(yz)dyz' (3‘78)

Using eq (3.75) we can rewrite the above equation as

R(ts, t1)R(t2,t2) = /_oo /_w Y32 fva.v2 (¥3, ¥2)dyady; /_co /_co vay1 fro vi (Y2, 11)dyadyr.  (3.79)
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Consequently,
R(ts,t1)R(t3,t3) = R(ts,ta)R(ts,ty). (3.80)

The only non-trivial autocorrelation function satisfying this property is given by eq (3.74).
Since y(t) is a zero mean SIRP, it follows that E[Y] = 0. Letting b = ezp(—a), we can write

the covariance matrix of Y as

1 b U
b 1 v N2

E= g b .. bN-3 (3.81)
bN—l bN-2 . 1

We then make use of eq (3.68) to obtain
E[YNIYN-I’ YN—Z vy )/l] = [bN—l bN_2 s b]Ey'_lY, (382)

where Y' = i, Ya, ..., Yn_4])T and

[ 1 b ... bN-2
b 1 ... bN-3

DI (3.83)
bN—2 bN—a IJ
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Recognizing that

[ 1 -b 0.. 0
-b 148 b 0 0
" 1 0 -b 145 ... ... 0
Eyl = I-::—'b—z- . (3-84)
0 ~b 1+ b
0 -b 1 ]
Therefore, we can rewrite eq (3.32) as
E[Vn|Yn_1, YN-a ..., Y]] = bYN_y. (3.85)
From eq (3.68), we also obtain
E[Yn|YN-1) = bYN_:. (3.86)

Clearly E[Yn|Yn-1] = E[Yn|Yn-1, YN-2 ...,Yj]. Since this must be true for all choices of
Y’la Y'Q, ‘e 'aYN—la it follows that fYNIYN..x,YN_z.--,Y: (yNIyN—h UN-2 .. -’yl) = fynlyn-t(leyN-l)-

Hence, y(t) is Markov.
3.6.6 Kalman Filter for SIRPs

It has been shown by Chu in [41] that the Kalman filter for SIRPs is identical to the corre-

sponding filter for a Gaussian random process. The model considered in [41] is given by

Xks1 = Fexp + Gywg (k=0,1,...,N 1)
(3.87)

Yk = Hyex o + vi (k -0, L...,N—-1)

where xy denotes the state vector of the underlying process, wy is its excitation vector, Yk

denotes the observation vector and vy is the measurement noise. It is assumed that Xk, Wi and
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vy are jointly SIRP with a common characteristic PDF fs(s). Also, let

E[xk]=xi (k=0$ L...,N- 1)
E[(xx — %ic) (xk — %ie) T] = My
Elwy] = E[vy] =0 (3.88)
El(xx - Xf)wkT] = E[(xx — *E)VkT] = E[wkv;f] =0
E[wiaWikm] = Qkbim

E[viavim] = Rybim

where Wy and vy, are the m** components of wy and vy respectively, and 6, is the Kronecker

delta function. Hence, x), Wi and vy are mutually uncorrelated while wy and vy are each white

with zero mean.

The innovations vector is defined as
Yik-1 = Yk — HeXyp-1 (3.89)

where Xyk-1 is the MMSE estimate of xi given the observation vectors up to k — 1. The

covariance matrix of the innovations can be shown to be
Cov(Fkik-1) = Skik-1 = (HkMiHy + R). (3.90)

It can be readily shown that xy and yy are jointly SIRP. Therefore, the MMSE estimate of xy
given the observation vectors up to k — 1 is a linear function of y;m m =1, 2, ...,k - 1, as
shown by eq (3.68). Hence, the Kalman filter equations for SIRPs are identical to those for the

Gaussian case. The Kalman gain denoted by Ky is expressed as
Kk = M HES; L . (3.91)
klk k3K Oxk-1 .
The measurement update Xk is given by

Kk = Xik-1 + KkkVrk-1 = (I — Kix)Rik-1 + Ky (3.92)
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The covariance matrix of the error in the update can be written as
Ci = My — My HT (H My HT + Ry) " H M. (3.93)

The prediction is then given by
*k+1|k = Fk*lqk- (3.94)

Finally, the covariance matrix of the prediction is expressed as
Miy1 = FyCuFy + GQuGy. (3.95)

When systems driven by non-Gaussian noise are encountered in practice, under the assumption

of joint SIRPs, these equations provide an efficient computation formula for the Kalman filter.
3.5.7 Statistical Independence

We point out that the only case for which the components of an SSRV are statistically inde-

pendent occurs when the SSRV is Gaussian. This property is proved in Appendix A.
3.5.8 Ergodicity of SIRPs

It has been pointed out in [39] that an ergodic SIRP is necessarily Gaussian. The proof of
the non-ergodicity of SIRPs (except Gaussian) can be easily obtained using the representation
theorem [28] for SIRPs which states that an SIRP is a univariate randcmization of the Gaussian
random process. More precisely, if y(t) is an SIRP, then it can be expressed as y(t) = Sz(t),
where S is a non-negative random variable and z(t) is a Gaussian random process. Clearly, if
2(t) is stationary, then y(¢) will also be stationary. However, different realizations of S result
in different scale factors for the sample functions of y(t). Therefore, time averages will differ
from one sample function to another and, in general, will not equal the corresponding ensemble
average. Consequently, y(t) cannot be ergodic. When S is a non-random constant, y(t) is a
Gaussian random process. Then y(t) will be ergodic previded 2(t) is also ergodic. It is concluded

that only Gaussian SIRPs can be ergodic.

3.6 Conclusion

In this chapter, we have presented an overview of the literature on both the modeling of radar
clutter and the theory of SIRPs. It is clear from this chapter that the PDF of an SIRV is uniquely
determined by the specification of a mean vector, a covariance matrix and a characteristic first

order PDF. It is also seen that many interesting properties of Gaussian randorm processes extend
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readily to SIRP.. A major difference with non-Gaussian SIRPs is their non-ergodic behavior.
Consequently, tii.> averages do not result in corresponding ensemble averages. However, if
ensemble averages are used instead of time averages, then non-ergodicity is not a serious problem.
In the following chapters, we shall present the application of SIRPs for non-Gaussian radar clutter

modeling, simulation and distribution identification.



Chapter 4

Radar Clutter Modeling Using
Spherically Invariant Random

Processes

4.1 Introduction

In this chapter we consider the use of the theory of spherically invariant random processes
(SIRP) for modeling correlated non-Gaussian radar clutter. It has been pointed out in chapter 2
that radar clutter can be non-Gaussian and that radars process N pulses at a time. Furthermore,
the clutter can be highly correlated. Therefore, by clutter modeling we mean the specification
of the joint probability density function (PDF) of the N correlated clutter samples. Since we
are dealing with correlated clutter, the joint PDF cannot be constructed by simply taking the
product of the marginal PDFs. This chapter presents a mathematically elegant and tractable
approach for specifying the joint PDF of N clutter samples. In addition, we discuss the char-
acterization of Gaussian and non-Gaussian correlated random vectors, the need for a library of
multivariate PDFs for modeliug correlated non-Gaussian clutter, several techniques for estab-
lishing this library and, finally, a key result for the distribution identification of multivariate
correlated non-Gaussian random vectors.

Specifically, the problem of modeling a random vector obtained by sampling a stochastic
process y(t) at N time instants is of interest to us. The stochastic process may be real or
complex. In addition, there is no restriction on the number of samples obtained or the sampling
time instants. In order to completely characterize the random vector we need to specify the joint

probability density function of the NV samples (real or complex) or, equivalently, specify the joint

49




characteristic function. This problem is very well treated when the underlying stochastic process
is Gaussian. The joint PDF in this case can be written as (21r)‘¥|2|'}exp(-—§), where p is a
non-negative quadratic form given by p = [y — u)TE~![y — u). Here 4 and ¥ denote the mean
vector and covariance matrix of the Gaussian random vector Y whose components are the N
samples of y(¢). However, if y(¢) is not a Gaussian random process, there is no unique specification
for the joint PDF of the N samples except when the samples are statistically independent.

When processing real world data, neither the Gaussianity of the underlying stochastic process
nor the statistical independence of the samples is guaranteed. In fact, it is likely that the samples
may be correlated. Hence, we need to obtain multivariate non-Gaussian PDFs which can model
the correlation between samples. In practice, radar clutter can vary from one application to
another. Therefore, we need to have available a library of possible multivariate non-Gaussian
PDFs so that an appropriate PDF can be chosen to approximate the data for each clutter
scenario.

The theory of Spherically Invariant Random Processes (SIRP) provides us with elegant
and mathematically tractable techniques to construct multivariate non-Gaussian PDFs. Spher-
ically invariant random processes are generalizations of the familiar Gaussian random process.
The PDF of every random vector obtained by sampling a SIRP is uniquely determined by the
specification of a mean vector, a covariance matrix and a characteristic first order PDF. In addi-
tion, the PDF of a random vector obtained by sampling a SIRP is a function of a non-negative
quadratic form. However, the PDF does not necessarily involve an exponential dependence on
the quadratic form, as in the Gaussian case. Such a random vector is called a Spherically
Invariant Random Vector (SIRV).

There are two kinds of models for non-Gaussian radar clutter. One is called the endogenous
model, where the desired non-Gaussian process with prescribed envelope PDF and correlation
function is realized by using a zero memory non- linear transformation on a Gaussian process
having a prespecified correlation function. In this approach it is not possible to independently
control the envelope PDF and the correlation properties of the non-Gaussian process. In addition,
not all nonlinearities give rise to a non-negative definite covariance matrix at their outputs. The
second model is called an exogenous product model [26)]. In this model, the desired non-Gaussian
clutter is generated by the product of a Gaussian random process and an independent non-

Gaussian process which can be highly correlated. In this scheme, the desired envelope PDF and
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the correlation properties can be controlled independently. The exogenous model can be thought
of as a slowly time variant non-Gaussian process modulating a Gaussian random process. The
SIRP is a special case of the exogenous model, arising when the modulating process does not
change rapidly during the observation interval and can be approximated as a random vasiable.
This is due to the fact that the representation theorem for SIRPs allows us to explicitly write the
non-Gaussian process as a product of a Gaussian precess and a non-negative random variable.
By assuming statistical independence between the modulating random variable and the Gaussian
process, it is possible to independently control the non-Gaussian envelope PDF and its correlation
properties . The SIRP is the only known case of the exogenous multiplicative model which allows
the specification of the N** order PDF.

Section 4.2 outlines the problem of interest. In Section 4.3 we present several techniques to
obtain SIRVs. Examples based on various techniques described in Section 4.3 are used to obtain
a library of SIRV PDFs in Section 4.4. Finally, in Section 4.5, we present a key result which
characterizes SIRVs by uaing the quadratic form appearing in their PDFs.

4.2 Problem Statement
We assume we are dealing with coherent radar clutter. By coherent radar clutter, we niean
that the clutter is processed in terms of its in phase and out of phase quadrature components.

Pre-detection radar clutter, being a bandpass random process, admits a representation of the

form
y(t) = Re{j(t)exp(jwot)} (4.1)

where §(t) = y.(t) + jy,(t) denotes the complex envelope of the clutter process, wo is a known
carrier frequency, y.(t) and y,() denote the in phase and out of phase quadrature componnts

of the complex process §(t). Equation (4.1) can be rewritten as
Y(t) = ye(t)cos(wot) — ys(t)sin(wot). (4.2)

We are interested in specifying the joint PDF of N samples obtained by sampling the process
y(t). Since it is always more convenient to work with the associated low pass process, we consider
the equivalent problem of specifying the PDF of N complex samples obtained from the complex
process g(t). The PDF of a complex random variable is defined to be the joint PDF of its in

phase and out of phase quadrature components. Therefore, it follows that the joint PDF of N
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complex random variables is the joint PDF of the 2N in phase and out of phase quadrature
components. While dealing with complex random variables, it :; sometimes more convenient to

work with their envelope and phase. The envelope R and phase © of a complex random variable

f’.- = Yy + Y, are defined by
R = YAtV )
4.

0, = arcta.n(,—‘f::l).

We consider the problem of specifying the PDF of a random vector YT = [YT:Y,”] obtained
by sampling the random process §(t), where Y¢ = [Ya, Y2, ..., Yen])” and Y5 = [Yyy, Yz, ..., Yon]™.
The subscripts ¢ and s denote the in phase and out of phase quadrature components, respectively.
We assume that the process y(t) is a wide sense stationary random process. The necessary and

sufficient conditions tor y(t) to be temporally wide sense stationary [42] are:
(A) The quadrature components have zero mean.

(B) The envelope of the pair wise quadrature components is statis-
tically independent of the phase and the phase is uniformly dis-
tributed over the interval (0,2x). This results in the pair wise
quadrature components being identically distributed and their
joint PDF being circularly symmetric. This also results in the
orthogonality of the pair wise quadrature components at each

sampling instant.

(C) The autocovariance function and crosscovariance function of the
quadrature processes of the complex process §(t) = y.(t) +
J¥s(t) satisfy the conditions given by

Kee(t) = Ko(r)

Keo(T) = —K,oT)
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where
ch('r) = E{Xc(t)XC(t - T)}
Ku(r) = E{X,(t)X.(t-T1)} (45)
Kca(T) = E{Xc(t)xl(t - T)}
Kio(t) = E{X,(t)X.(t-71)}.
Also, the nonnegative definite property of the covariance matrix

of Y must be satisfied.

(D) Any choice of autocovariance and crosscovariance functions is al-

lowed as long as requirement (C) is satisfied.

Due to requirement (A), it follows that E(Y) = 0. Hence, E(Y.) = E(Ys) = 0. As a

consequence of requirements (B) and (C), the covariance matrix of Y, given by

Tee | Yies
E=] - | - | (4.6)
| Bee | Sae
must satisfy the conditions:
Yee = s
(4.7)
2cs = —Esc

with the elements of the main diagonal of the matrices X ¢y and g being equal to zero. Note
that Bee = E{YcYZ}, Bes = E{Yc YT}, Sge = E{Y:YT} and 85 = E{YsYT}. Finally, we

point out, regardless of the value of N, we always have an even order PDF when dealing with

quadrature components. We are now in a position to proceed with the characterization of Y as

an SIRV.
For an SIRV, it is pointed out that the PDF of a given order automatically implies all lower

order PDFs. For example, if N random variables are jointly Gaussian, it is well known that
the i** order PDF, i = 1,2, ..., N — 1 is multivariate Gaussian. This property of SIRVs is

called internal consistency. The requirements (A)-(D) arising from the wide scnse stationarity
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requirements of the process y(t) are called external consistency conditions. Requirements (A)-(D)

are not inherent to tl.e SIRP and do not hold when the SIRI’ is not wide sense stationary.

4.3 Techniques for Determining the SIRV PDF

In this section, several techniques are presented for obtaining han(p) For convenience, tem-
poral wide sense stationarity of the underlying bandpass process is assumed. However, the
functional form of Agn(.) is unaffected whether or not the random process is temporally wide
sense stationary. Hence, it is allowable to let p = (y — b)TEX~!(y — b) in the final result, where
b is any mean non-zero vector and X is any non-negative definite matrix.

Recall from Chapter 2 that the PDF of an SIRV Y7 = [Y.T:Y] with Y. and Y, defined in

Section 4.2 is given by
fr(y) = (2n) |8 han(p) (4.8)

Assuming temporal wide sense stationarity, p = yTE¥~'y where ¥ is given by eq (4.6). The
mean vector of Y is zero due to requirement (A) in Section 4.2. The covariance matrix £ having
the form of eq (4.6) and satisfying the requirements of eq (4.7) is readily determined when the
autocorrelation function of the process is specified. Given X, several techniques for obtaining
han(p) are presented in this section.

The representation theorem for SIRVs allows us to express Y as a product of a Gaussian
random vector Z, having the same dimensions as Y and a non-negative variable S. For the
problem of radar clutter modeling, since it is desirable to control the non-Gaussian nature of Y
and its correlation properties independently, we assume that the random variable S is statistically
independent of Z. In addition, the covariance matrix of the SIRV can be made equal to the
covariance matrix of the Gaussian random vector by requiring E(S?) to be unity. Finally, it is
pcinted out that the mean of Z is necessarily zero.

A physical interpretation can be given to Z and S. Consider a surveillance volume subdivided
into contiguous range-Doppler-azimuth cells. Assuming a large enough cell size such that many
scatterers are located in each cell, the N pulse returns from a given cell can be modeled as
the Gaussian vector Z due to the central limit theorem. Also assume that the average clutter
power remains constant over the N pulse returns in a coherent processing interval. However,
the average clutter power is allowed to vary independently from cell to cell since different sets of
scatterers are located in each cell. The variation of the average clutter power from cell to cell is

modeled by the square of the non-negative random variable S.
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4.3.1 SIRVs with Known Characteristic PDF
We consider specification of the PDF of the SIRV Y when its characteristic PDF is known
in closed form. We have pointed out in the previous section that the mean vector of Y is zero.
Also, we bhave discussed the specification of the covariance matrix of Y. We now focus on the
specificaticn of hyn(p). As a consequence of the representation theorem, we can write
haw(p) = [ s Weap(— L5 fs(s). (49)
Equation {4.9) enables us to specify han(p) when the characteristic PD} fg(s) is known in
closed form. However, in some cases, even though an analytical cxpression is known for the
characteristic PDF, it may be difficult to evaluate the integral in eq (4.9) in closed form. In such
instances, an alternate method for specifying han(p) must be examined. The tnethod presented

in the next section is useful for these cases.
4.3.2 SIRVs with Unknown Characteristic PDFs

When the characteristic PDF of the SIRV is unknown or when the integral in eq (4.9) is difficult
to evaluate, we propose au alternate method to obtain kon(p). Recall that we are dealing with
an even order PDF. Therefore, we can use eq (3.25) starting with h,(w) to obtain hay(w). It is
worthwhile pointing out that hg(.) is related to the first order enveiope PDF. From requirement
(B) of Section 3.2, the joint PDF of the i** in phase and out of phase quadrature components

can be expressed as

fyc-‘.Yn‘(ycia yai) = (27!‘)-10’_2}&2(1)) (z =12, ... vN) (4'10)

2 4.2
where p = (—y‘l’;}’ﬂl and o? denotes the common variance of the in phase and out of phase

quadrature components. The envelope and phase corresponding to the i** quadrature components

R, = JYI+Y]: (4.11)

Y.
JR— Lai
@, = arctan Y.,

is given by

Due to the assumption of wide sense stationarity, we can drop the subscript 7 in eq (4.11). The

Jacobian of the transformation given by eq (4.11) is J = R~!, where J denntes the Jacobian.




Using the Jacobian in eq (4.10) results in the joint PDF of R and © being given by

r ré
fre(r, 6) = z-—ha(~3). (4.12)

Clearly, the joint FOF in eq (4.12) can be factored as a product of the marginal PDFs of
the random variables R and ®. Consequently, the random variables R and © are statistically

independent with PDFs given by

Fr(r) = Zhi(fx) (0<r < 00)
(4.13)
fe(d) = (2m)"! (0<6<2n)
Equation (4.13) relates the envelope PDF to ky(.). Hence, we can write
o o?
ha(-5) = —fr(r). (4.14)

Thus, eq (4.14) provides a mechanism to obtain h;(w). Starting from hy(w), we then use eq (3.25)
to obtain hon(w). Since not all non-Gaussian envelope PDF's are admissible for characterization
as SJRVs, we must check that hy(w) and its derivatives satisfy the monotonicity conditions stated
in Chapter 2. Finally, hon(p) is obtained by simply replacing w by p = (y — b)7E"!(y — b) in

th(w).
4.3.3 Hankel Transform Approach

In this section we present an approach based on the Hankel transform for specifying hzn(p).
Recall that the joint PDF of the :** in phase and out of phase quadrature components of Y is
given by eq (4.10). For convenience, it is assumed that ¢? is unity. Dropping the subscript i

from eq (4.10), the joint characteristic function of Y,; and Y,; is expressed as

brovwnw) = @0 [ [~ eaplione + jwmaha(u? + 2 dyedys. (4.15)
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Introducing the transformations

R = /Yc2+y.')

O = a,rctan’p':

w = ywi+wi

a = arctan ¥
Wy

we can rewrite eq (4.15) as

dv..v, (w1, wy) = (27)! /Ooo /:’r expljwr{cos(f)cos(a) + sin(8)sin(a)})rha(r?)dr do.

Noting that cos(A — B) = cos(A)cos(B) + sin(A)sin(B), we can rewrite eq (4.17) as
#v.,v, (w1, wa) = (2r)* /oo /21r ezpljwrcos(8 — a)]rhy(r?)dr d6.
Tl o Jo
Interchanging the order of integration in eq (4.18), and recognizing that [45]
Jo(z) = o= [ eapli d
o(@) = 3= [ eaplizcos(8 - 1))d,
where Jo(z) is the Bessel function of order zero, we have

#v.,v, (w1, wa) = /ooo rha{r?)Jo(wr)dr.

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

From eq (4.20), it is clear that the joint characteristic function of Y, and Y, is a function of

w = y/w} + w?. Hence, it is a circularly symmetric characteristic function. Denoting this function

by ¥(w), we can write
U(w) = /0 rha(r?)Jo(wr)dr.

(4.21)

Equation (4.21) is recognized as the Hankel transform of order zero of ha(r?). Using the inverse

Hankel transform, we obtain

ha(r?) = /ooo w¥(w)Jo(wr)dw.
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Introducing the durmmy variable w, we can write

ha(w) = /0 * w0 (w)Jo(wy/w)dw. (4.23)
We then use eq (3.25) to obtain hyn(w). More explicitly, we can write
Ne1 [® dN-1
ha(w) = (=¥ [ 00 (w) - o(wv/)]dw. (4.24)
Using the identity [45]
h(m) _ _ () (4.25)
dn
we have
d—JE%"-—w‘/“T’ = —‘-;-w-%J,(w\/{ﬁ). (4.26)
Use of the recurrence relation [45]
d -a —a
a1 Je(m] = 1" Jata(n) (4.27)
results in
d? w? -2
77 [o(wVw)] = (V) fy(wvw). (4.28)
Repeated use of eq (4.27) gives
dN—l N le—l N
W[Jo(w\/a)] = (-—1) = -'2—1\7:1—(\/'(;)_ +1JN-—1(W\/'¢;). (4.29)
Substituting eq (4.29) in eq (4.24) gives
han(w) = (V@)~N /o WV O (W) Iy -1 (/D) dw. (4.30)

Finally, han(p) is obtained from eq (4.30) by replacing w by p = (y —b)?E¥~'(y —b). This
completes the proof of eq (3.27) for even values of N which had been previously deferred. The
integral in eq (4.30) is recognized as the Hankel transform of order N — 1 of ¥(w). A number

of Hankel transforms have been provided in [46] and these will be made use of in the examples

presented in Section 3.4.

58




4.4 Examples of complex SIRVs

This section presents examples based on the approaches discussed in Section 4.3 and is divided
into three parts. In section 4.4.1, we present examples that assumes the knowledge of the
characteristic PDF, In Section 4.4.2, the marginal envelope PDF is assumed to be known whereas
in Section 4.4.3, knowledge of the marginal characteristic function is assumed. Finally, in 4.4.4
we point out some univariate PDFs that cannot be generalized to SIRV characterization. We
consider the problem of determining the PDF of the random vector YT = [Y”:Y4] specified in
Section 4.2. It is assumed that the mean vector of Y and its covariance matrix ¥ are known.
Consequently, specification of the PDF of Y of the form of eq (4.8) reduces to determination of
han(p).

4.4.1 Examples Based on the Characteristic PDF
4.4.1.1 Gaussian Distribution

The Gaussian marginal PDF for the quadrature components having mean b, and variance o}
is

-emp(_.(g’f?;._é’.}iz.) (-—oo < Yk S OO) (431)

(27(')0’)c
The characteristic PDF for this example is given by

friyx) =

fs(s)=6(s-1) (4.32)

where §(.) is the unit impulse furiction. Using eq (3.16), it is seen that the resulting hn(p) is

given by
hn(p) = eap(~). (4.33)

where p = (y — b)TE~1(y — b). The corresponding PDF for any N is given by eq (3.15). For
N =1, this result reduces to eq (4.31). While dealing with quadrature components, we obtain the
the corresponding han(p) by simply replacing N by 2N in eq (4.33). Whenever a characteristic
PDF can be made to approach a unit impulse function displaced to the right of the origin by
appropriate choice of its parameters, it follows that the corresponding SIRV PDF will approach
the Gaussian PDF.
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4.4.1.2 K-Distribution
The K-distributed envelope PDF, by definition, is given by

i) = 5 (3) Kona(br)ucr) (4.34)
where « is the shape parameter of the distribution, b denotes the scale parameter of the distribu-
tion, Kn(t) is the N*» order modified Bessel function of the second kind and u(r) is the unit step
function. The K-distributed envelope PDF is commonly used for modeling radar clutter PDF's
that have extended tails [32]- [33] and [15]-(22]. In particular, the PDF becomes heavy tailed as
a approaches zero. Plots of eq (4.34) for several values of a are shown in Figures 4.1-4.4.

The K-distributed envelope PDF arises when we consider the product of a Rayleigh distributed
random variable R’ and an independent random variable V having the generalized-Chi distri-
bution. More precisely, we consider the product R = R'V, with R and V being statistically
independent. Their PDF's are given by

fa) =reap(-IL) 05 <00 (4.35)
and
2b 2001 b%v?
(o) = prasgs (o) lespl="- (o), (4.36)

respectively. Consequently, the PDF of R is given by

fr(r) = Io” frv(r|v)fv(v)dv

(4.37)
=[5 Freap(— ) iz (bv) @ eap(— ).
From [45], we have
K, (zz) = f:/w ea:p[—f(t + f-2-)]15""1(1# [largz| < E] z>0. (4.38)
2 Jo 2 t 4" ‘

Letting v? = ¢ ir. eq (4.37) and using the result of eq (4.38), the PDF of eq (4.34) follows.
As a matter of interest, we demonstrate the derivation of the PDF for the quadrature compo-
nents arising from the K-distributed envelope PDF. The quadrature components corresponding to

the Rayleigh envelope PDF fR:(r'), are independent identically distributed zero mean Gaussian
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Figure 4.1: K-distribution, b = 0.31, a = 0.05
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random variables having unit variance. The PDF of the quadrature components corresponding
to R is expressed as ,
-1 2 .
fz.(2) = f2.(2) = (2m) 3 ezp(-3) (4.39)
where Z. and Z, denote the in phase and out of phase quadrature components. The quadrature
components arising from the K-distributed envelope PDF, denoted by Y. and Y,, respectively,

can be expressed as

Y.=2.V
(4.40)
Note that |¥| = |Z| and ©p = ©4. Consequently, the PDF of Y, is given by
b . 2a-2 1 y2 122
fr.(ye) = .\/_-Z—W—I‘(_a)-i;:l_/ﬂ v exp[—§(-v—,~; + b%v?)]dv. (4.41)

Making the change of variables t = b*v? and z? = b%y?, and using the result of eq (4.38), the
PDF of Y, is expressed as

2b 1
Fro(¥e) = s byl T Ky (Blyel)  — 00 <ye < 00 (4.42)

I"(a)\/2_7r2°’

where the absolute value denoted by |.| is used on account of the requirement that 2 > 0. In a
similar manner, it can be shown that the PDF of Y, has the same functional form as eq (4.42).
The PDF of eq (4.42) is called the Generalized Laplace PDF [29].

The characteristic PDF for the K-distributed SIRV is

f - 2 b 2a-1 b%s? 4.43
5(6) = Fras (09 espl =5 Ju(s) (4.43)
Using eqs (3.16) and (4.38),
o0 2 o2
hn(p) 2/1; 3'Nexp(—§%)-l;—(—;2)—2—;(bs)z""lemp(—é-zf——)ds. (4.44)

Making the change of variables ¢t = 0%s? end 2? = b?p, the resulting hn(p) is given by

b8 (by/p)*"%

hN(p) = F(a) 9a-1 Kizu—a(b\/l—’) (445)




The corresponding SIRV PDF for any N is given by using eq (3.15). For the case when N =1,
this reduces to eq (4.42). When dealing with quadrature components, we use eq (4.45) with N

replaced by 2N
4.4.1.3 Student-t Distribution

The Student-t distribution for the quadrature components is given by

(v +3)

fri(y) = bfr(u)( + ) "} (o< <), v>0 (4.46)

where b is the scale parameter, v is the shape parameter I'() is the Eulero-Gamma function and
k = ¢, s. Plots of the Student-t distribution are shown for several values of v in Figures 4.5-4.7.

The characteristic PDF for this example is

F5(9) = s ()" B 6™ P Heapl= (o) (4.47)

Use of eq (3.16) results in hx(p) being given by

252 (v + %)

. 4.48
TG)® + )5+ (449

hn(p) =

The corresponding SIRV PDF for any N is given by eq (3.15). For N = 1, this result reduces to
eq (4.46). When dealing with quadrature components, we make use of eq (4.48) with N replaced

by 2N.
4.4.1.4 Mixture of Gaussian PDFs

An interesting non-Gaussian marginal PDF that is admissible as an SIRV is the mixture of

Gaussian PDFs. We consider the PDF given by
— b.)2
Frlue) = X as(2nk?)beap(- L= ) (1.49)
for the quadrature components of Y. The characueristic PDF for this example is given by

fs(s) = 2" aib(s — k). (4.50)
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Figure 4.5: Student-t distribution, b = 0.14, v = 0.01
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Figure 4.6: Student-t distribution, b = 0.45, v = 0.1
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Note that S is a discrete random variable, with a; denoting the probability P(S = ki). Also, it
is required that

@ >0 i=12,..
(4.51)

Yiai = L

Using eq (3.16), it is seen that
hn(p) = Z kaa;emp(—g%-). (4.52)

The corresponding SIRV PDF for any N is given by eq (3.15). For N = 1, this result reduces
to eq (4.49). When dealing with quadrature components, we make use of the result of eq (4.52)

with N replaced by 2/N. Note that the a;’s can be assigned any convenient discrete distribution.
4.4.2 Examples Based on Marginal Envelope PDF

We shall report here on some new SIRV PDFs obtained starting from the marginal envelope
PDF. In general, note that the characteristic PDF for all the examples considered here are not
available in closed form. Since o2 is the common variance of the in phase and out of phase
quadrature components, o2 is equal to 1 E(R?). In addition, recall that the binomial coefficient
is defined by

! ) 1!

' ) - m’l_:z,_)!. (4.53)

i
In all the examples in this section, we start with Az(w) and obtain hn{w) by the process of
successive differentiation. The corresponding han(p) for each example is obtained by replacing
w by p in hay(w). In all the examples presented in this section, note that the envelope PDFs

reduce to the Rayleigh envelope PDF for appropriately chosen parameters.
4.4.2.1 Chi Envelope PDF

We consider the Chi distributed envelope PDF given by

fr(r) = F?i—)(br)z”'lezp(-bzrz) (0<r £ ) (4.54)

where b denotes the scale parameter and v denotes the shape parameter. Plots of the Chi

envelope PDF are shown in Figures 4.8-4.10 for several values of v. Using eq(4.14), we can
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Figure 4.11: Chi Envelope PDF, b = 0.70, vy = 1.0
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write
— 2 bV ezl —bio?
ha(w) = ) (b )**w" " exp(—b*o'w).

Using eq(3.25), we have
han () = (~2)¥-1 &0l
= 1'—13{%'12(1;0 ) A [whtezp(—bP0Pw)).

Recall Leibnitz’s theorem for the n** derivative of a product [45], which states that

d*(uwv) | ™| drudry

dzn k§0 i dz* dgn=*

where u and v are functions of z. Noting that

dk(wu-l) - I'(v) wr—k-1
dw* I'(v — k) ’

it follows that N
han(w) = (-2)V'A Y Grw**exp(— Bw)

k=1
where
Gk = N-1 ] (_I)N—kBN—k F(”)
-1 ) flv-k+1)
— __2__ 2v
A l"(u)(ba)
= blo?

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)

An important condition that must be pointed out is that the SIRV PDF is valid only for » < 1.

This is due to the fact that k;(p) and its derivatives are monotonically decreasing functions only

in the range of values of v mentioned above. Finally, for » = 1, note that the Chi envelope PDF

reduces to the Rayleigh envelope PDF. The corresponding SIRV PDF then becomes Gaussian.
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4.4.2.2 Weibull Envelope PDF
The Weibull distributed envelope PDF is given by

fr(r) = abr*lezp(—ar®) (0 <1 < 00).

(4.61)

where a is the scale parameter and b is the shape parameter. Plots of the Weibull distribution

for several values of b are shown in Figures 4.12-4.14. Using eq (4.14), we have
b b 1 b ] d b
ha(w) = abo’wi™ ezp(—ac’w?) = (—Z)E-t;[emp(-—Awf)]

where A = ao®. From eq (3.25), we have

N
() = (~2)" e leap(— du)].

The rule for obtaining the N** derivative of a composite function is [45]: If f(z) =

y = ¢(z), then
where
k k dN m
—_— _1\k—m k-m @Y
m
Making the association £ = w and y = — Aw3, we have
hon(w) = Z Ckw %= exp Auﬁb)
where
_ sy An [ F T+
- k! I(1+ 42—~ N)
m

(4.62)

(4.63)

F(y) and

(4.64)

(4.65)

(4.66)

(4.67)

The Weibull envelope PDF is admissible for characterization as an SIRV for values of b less than

or equal to 2. This is due to the fact that hz(w) and its derivatives fail to satisfy the monotonicity

condition for other values of b. However, this is not a serious restriction from the point of view of

radar clutter modeling because the Weibull envelope PDF is of interest in modeling large tailed
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Figure 4.12: Weibull distributed Envelope PDF, b = 0.5, a = 1.86
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Figure 4.13: Weibull distributed, b =1, a=1
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clutter. Such a situation arises only when 0 < b £ 2. The Weibull envelope PDF reduces to
the Rayleigh envelope PDF when b = 2. The corresponding SIRV PDF then becomes Gaussian.

Another case of interest arises when b = 1. In this case the Weibull envelope PDI' corresponds

to the Exponential envelope PDF.
4.4.2.3 Generalized Rayleigh Envelope PDF

The next PDF considered is for the Generalized Rayleigh envelope which is given by
falr) = gmrrreapl=(5)"] (0 < < oo) (4.68)
R = mexp ﬂ Srs .

where o is the shape parameter and S is the scale parameter. Plots of the Generalized Rayleigh
distribution are shown for several values of « in Figures 4.15-4.18.

Pruceeding as in the previous example, we find that

ha(w) = Aexp(—~Bw?) (4.69)
where
A = a’o
A (4.70)
B - ,3-0100

Using eqs (3.25), (3.63) and (3.64), we have

N-1
han(w) = 3 Dyw'$-N+legp(— Buwt) (4.71)
k=1

where

k Bkl k r'(1 + 22)
—_— m+N-19N-1 2
Di= 2G0T | |t m (4.72)

mezz1

Note that the SIRV PDF is valid only in the range (0 < o < 2). This is because of the fact
that the monotonicity conditions for the derivatives of hy(p) are satisfied only for the specified

range of a. The Generalized Rayleigh envelope PDF reduces to the Rayleigh envelope PDF when

a=2.
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Figure 4.16: Generalized Rayleigh distributed Envelope PDF, o = 0.5, 8 = 0.048
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Figure 4.17: Generalized Rayleigh distributed Envelope PDF, a =1, g = 0.577
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Figure 4.18: Generalized Rayleigh distributed Envelope PDF, a =2, § = 1.414
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4.4.2.4 Rician Envelope PDF Arising from a zeromean complex Gaussian Process with
correlated quadrature components

There are two possible ways in which the Rician envelope PDF occurs. One possibility arises
through a compiex zero mean random process with correlated quadrature components that are
Gaussian. The other is through a non-zero mean complex Gaussian process. The former case is
considered here, since the SIRV PDF can be obtained by differentiation of hz(w). For this case,
the envelope PDF is given by

2

falr) = —mgeap|~ gl —] (4.73)
(0 < r <o0)
(0<p<1)

where Iy(z) is the modified Bessel’s function of the first kind of order zero. Plots of the Rician

envelope PDF for several values of p are shown in Figures 4.19-4.21. Let

sz

A = é-(—l-:-;‘{)-. (4.74)
Using eq (4.14) we have
2
ha(w) = —me—exzp(—Aw)Io(pAw). (4.75)

W
From eq (3.25) b
~1h)(w

hZN(u’) = (__2)N-l dwN-1 (4'76)
We then use eq (4.57) and the identities [45]
In(z) = & [§" cos(nb)exp[zcos(0))do
(4.77)

k
cosk(0) = X Tk _, cos|(k — 2m)0)

to obtain

han(w) = —— = 3 [ (~D*(E) ekenn(- 4w) (4.78)
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Figure 4.19: Rician Envelope PDF, p = 0.25
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Figure 4.20: Rician Envelope PDF, p = 0.5
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where

k k

b= Ii_am(pAw). (4.79)
m:=0 m

For p = 0, note that the Rician envelope PDF corresponds to the Rayleigh envelope PDF.
4.4.3 Examples Using the Marginal Characteristic Function

Successful use of the marginal characteristic function approach requires the knowledge of vari-
ous Hankel transforms. For each example, the particular transform used is cited by equation and
page number as it appears in [46]. To illustrate the procedure followed, a detailed derivation is
presented in the first example. However, in the remaining examples, we simply list the univariate
characteristic function of the quadrature components, the corresponding marginal PDF and the
resulting Ay (w). Finally, hon(p) is obtained by replacing w with p in the expressions for han(w).

4.4.3.1 Gaussian Distribution

First, we consider the characteristic function given by
w?
Y(w) = e:tp(—-—z—). (4.80)

The corresponding marginal PDF of the quadrature components is

fri(ye) = \/(12;—)&1’(—3—’2—’%) (=00 < yx < 00). (4.81)

Equation (4.81) is the PDF of a zero mean unit variance Gaussian random variable. Substitution

of eq (4.80) in eq (4.30) yields
han(w) = (Vw)'~V /Ooo wNe:vp(—-f-u;)JN.,l(w\/[J)tﬂu. (4.82)

From [46], eq (10), p29, we have the Hankel transform

[ e 2)J, ds = L2 v’ 4.83
A "V iexp(-az®)J,(zy)\/rydz = a1 e:vp(—-4a). (4.83)

By making the association that a = 0.5, v = N —1, ¢ = w and y = 1/w, the above result becomes

w

| ot eap(= ) n-r(wvB)ode = o reop(-2). (4.84)
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It follows that
han(w) = ea:p(—g-). (4.85)
From eq (4.1), it is seen that the resulting SIRV PDF is the familiar multivariate Gaussian PDF,
given by
y) = @2r)~N|B| tezp(~L 4.86
fy(y) = (2m)~7 || 2ezp(-3). (4.86)
4.4.3.2 K-Distribution
The marginal characteristic function given by
2

B(w) = (1 + ‘Z—,—)‘“ (4.87)

corresponds to the K-distributed envelope whose PDF is

26 br.,
fa(r) = m(’g) Ko-1(br)u(r) (4.88)
where a is the shape parameter of the distribution, b denotes its scale parameter, Kn(t) is the
N** order modified Bessel function of the second kind and u(r) is the unit step function. The

pertinent Hankel transform for this example is found as [46] eq (20), p24:

1
® wrb( 2 2\—u-1 = a"Uy**iK,_y(ay)
/o 2"t (22 + a?)~*"1J, (zy)/FTdz TG (4.89)

The resulting hyn(w) is

han(w) = s LD K (/). (4.90)

As a special case, when a is equal to unity, eq (4.87) is the characteristic function of the

Laplace distribution for the quadrature components whose PDY is iven by
b
Fri(ye) = sezp(=blysl) (—o0 < yi < o0) (4.91)

where |yk| denotes the absolute value of yx and b denotes the scale parameter. The corresponding

hen(w) is given by
han(w) = b*N (by/w)* =N Kn_1(bv/w). (4.92)

Another interesting case of the K-distribution arises when o = 0.5. Since K 1 (t) = \/:;'-:ea:p( —~t),

this corresponds to the exponential distribution for the marginal envelope PDF. Therefore, the K-
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distributed envelope PDF with a = 0.5 is identical to the Weibull distributed envelope with b = 1.
Although the characteristic PDF of the Weibull SIRV is unknown in general, the characteristic
PDF of the Weibull SIRV for b = 1 is obtained when a = 0.5 in eq (4.43). Finally, we point out
that the K-distributed envelope reduces to the Rayleigh envelope PDF when «a tends to oo.
4.4.3.3 Student-t Distribution

The characteristic function for the Student-t distribution with scale parameter b and shape

paraineizr v is given by .
_ K (b))

VW) = =35y
Note the functional similarity with the envelope PDF given by eq (4.88). The Student-t distri-

bution is referred to as the generalized Cauchy distribution in [47] because the marginal PDF of

(4.93)

the quadrature components is given by

frye) = ;%r-—;(%(l + %g)'""% (—00 < zx € 00), v >0 (4.94)

where I'(v) is the Eulero-Gamma function. The relevant Hankel transform, [46] eq (3), p63 is

o 1 , 2v+ugu[(u + v + 1)y +5
/0 e+ Ko (az) e )VETds = . (4.95)
Using eq (4.30), han(w) is expressed as
2NPI(y + N)
haw(w) = 3 T w) (4.96)

The Cauchy PDF for the quadrature components arises when v is set equal to 1 in eq (4.94)

and is given by

fri(ye) = b ) (=00 < x4 < 00) (4.97)

w(b? + yi
where b is the scale parameter. The corresponding han(w) is
2+ N)
V(8 + w)N+§
Note that the Cauchy PDF does not have finite variance. However, this PDF is useful in modeling

impulsive noise [48]. Finally, we point out that when b = +/2v and v tends to oo in eq (4.94),

the Student-t distribution reduces to the Gaussian distribution.

han(w) = (4.98)
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4.4.3.4 Rician Envelope PDF arising from a non-zero mean complex Gaussian Process

We consider the Rician envelope PDF, arising from a non-zero mean complex Gaussian procees,

given by

alr) = Speapl XS N (2 (4.99)

Plots of the Rician envelope PDF are shown in Figures 4.20-4.22 for a = 1 and several values of
a. Note that this PDF approaches the Rayleigh PDF as a tends to zero. For convenience, we
assume that ¢? = JE(R?) = 1. Using eq (4.14), we have

ha(r?) = Aea:p(—- )Io(—;) (4.100)
2
where A = ff—':(;-f-%'—). Noting that [45]

[&° zezp(—az?)1,(Bz)J,(yz)dz = exp(EE)J,(8)

(4.101)
Re{a} > 0, Re{v} > -1,
eq (4.21) results in the characteristic function
o
U(w) = ea:p(-- )Jo( ) (4.102)

Recognizing that [45]

5 2 exp(~aa?)Ju(Bz)J(yz)dz =

i Lk N(m+E+m% 4341 o
B”;,.*“*‘r("-ﬂ) ® 5 (":';r(m+“1'_%) )( ) F(~m, —p - m; v +1; :13.) (4.103)

Re{a} >0, Re{p+v+21}>-2,>0,v>0

where F(., .; .; .) is the four parameter hypergeometric function, it follows from eq (4.30) that

wat

2N+2
Dm AN+ = e, —m; N; =) (4.104)

han(w) = 2INHIT(N) 4 E m!I'(m + 1) (20!6

Since han(w) for this example involves an infinite series of hypergeometric functions, form is

mathematically intractable. Therefore, the corresponding multivariaie SIRV PDF does not lend
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Figure 4.22: Rician Envelope PDF, a = 0.25, & = 1
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Figure 4.23: Rician Envelope PDF, g = 05,a=1
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Table 4.1; Marginal PDF

IFNK?"TT)'@.: POF | Jx Sf(g 1
Chi L 2) = Tezp(—biz7)
Weibull abz’~'exp(—ax’
Generalized Rayleigh ,;ﬂ-n-ezp[—( o
Rician 7;':_';:”?[*5(1'.:;!7110[]{%!)'] H
Gaussian V2r exp(~%) |
Laplace sexp(—blzyl) i
Cauchy LIGLTH “
K-distribution () Ko 1 (b2)u(z) |
Student-t %%)5(1 + %;)""9 "

itself for use in practical applications.
4.4.3.5 Summary

The results derived in this section are summarized here. As a point of interest, it is mentioned

that the log-normal envelope PDF given by

fr(r) = V2

and the Johnson (unbounded) distribution whose PDF is given by

*l——emp[—ﬂ-o-g-éﬁ—}-z-] (4.105)
Ty

ezp[— {Sinhﬁ;(;i) - '7}2] (4.106)

1
fr(y) = oI e

cannot be extended to SIRVs because hz(w) for each of these distributions fails to satisfy the
monotonicity conditions stated in section 4.3.

Table 4.1, presents a list of marginal PDFs suitable for extension to SIRVs. Table 4.2 tabulates
han(p) for those marginal PDFs treated as envelope PDFs while Table 4.3 gives those hon(p)
obtained from the associated marginal characteristic function.

Plots of eq (4.8) with N = 1 for the various SIRV PDF's are shown in Figures 4.25-4.33. In all

the plots, the covariance matrix used is given by
L= (4.107)

Observe that each PDF is unimodal. However, the width and height of the peak along with the
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—___Table 4.2: SIRVs obtained from the marginal envelope PDF

l
(-2)¥-1AY, ., Grp*~"ezp(~Bp)
o= (12F) Corimtetti
f A= phs(bo)?

;2
v<l

Weibull T c.p‘i‘-”ezp( Ap¥)
A=aco®
Ch =L mai(- 1)m+N2N1T( ) r(l;-:+ 1))
b< 2

Gen. Rayleigh E”"D;p‘f‘”“ezp( Bp%)
A = 5Dy

ﬂ-doa

g () i
a<?

Rician -1—";)',7_12,,_0 ( Nk_ 1 )(*l)k(%)kfkelp('—/i)
& = Tao ( m )I"""'(”A)’ A= F(E"F’T

Table 4.3: SIRVs obtained from the marginal characteristic function

[ Marginal PDF | han(p)
Gaussian ezp(—%)
Laplace *V(byp)! "V Kn_1(b\/P

27C(A+N
Cauchy "
+rK distribution KN—a(b\/I_’)
Student-t %ﬁ%

97




behavior of the extreme values (i.e. the tails) differ significantly.

4.5 Significance of the Quadratic form of the SIRV PDF

Thus far, our discussion has focused on techniques that can be used to obtain the PDF of an
SIRV starting from either the first order PDF or the first order characteristic function. Given
random data, we are also interested in the problem of approximating the distribution of the
underlying data. The problem of multivariate distribution identification is of interest in radar
signal detection. Since the background clutter is not known a priori, there is a need to identify the
underlying clutter PDF based on measurements obtained from a given environment. Since the
radar processes N pulses at a time, knowledge of the joint PDF of the N samples is necessary in
order to obtain the optimal radar signal processor for the given clutter background. We present
an important theorem here which enables us to address the distribution approximation of an
SIRV.

Theorem 4 The PDF of the quadratic form appearing in eq (3.15) is given by

T hn(p) (0 < p < o0). (4.108)

Proof: First, we consider a spherically symmetric random vector (SSRV) X = [X;, X3, ..., Xn]7.
Because an SSRYV is a special case of the SIRV, the representation theorem can be used to express
X as

X =2ZS (4.109)

where Z is a Gaussian random vector having zero mean and identity covariance matrix and S is

a non-negative random variable with PDF fg(s). Consider the random variable
P =XTX. (4.110)

Using eq (4.109) in eq (4.110) gives
P =12725% (4.111)

Since Z27Z = Y°N, Z? is the sum of the squares of independent identically distributed Gaussian

=1

random variables having zero mean and unit variance, the PDF of V = ZTZ is a Chi square




Figure 4.25: Gaussian distribution, zero mean, unit variance
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distribution with N degrees of freedom. Consequently,

-1

v
fv(v) = -g-——-l,( ,,,)ewp(~5) ;v20. (4.112)
) Noting that P’ = V5%, it follows that
ney _ @)E
. = o - . 4.113
fps(pls) 2?}‘(?5 P( ) ( )
From the theorem of total probability, we have
N i DL S
fp(p) = | W‘)' xP( )fs(S)d-S- (4.114)
Recall from Theorem 2 that
N [® N P
hn(p) = /o sNeap(—L£5) fs(s)ds. (4.115)
Consequently, the PDF of P’ is expressed as
fwts) = B p), (4.116)
27(§)
Recall that an SIRV Y = [V}, Y5, ..., Yn]7 having a mean vector b and covariance matrix X is

related to the SSRV X by the linear transformation
Y=AX+b (4.117)
where ¥ = AAT. Observe that
P=(Y-b)TE-Y(Y -Db)

= (AX)(AAT)-1AX (4.118)

= XTX.
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Since P = P', the PDF of the quadratic form P which is associated with Y is

fo(p) = gg?%mp). (4.119)
3

This establishes the ilicurem. Thus, an SIRV is uniquely characterized by the quadratic form ap-
pearing in its PDF. Knowledge of the quadratic form PDF is sufficient to identify the SIRV PDF.
This is an important result since it allows us to reduce the multivariate distribution identifica-
tion problem to the equivalent problem of univariate distribution identification of the quadratic
form. We point out that the invariance of the distribution of the quadratic form, regardless of
whether we are dealing with an SIRV or an SSRV, arises from the fact that the random vector
is distributed over an N dimensional hypersphere of radius R. The radius of the hypersphere
remains unchanged regardless of whether we consider an SIRV or an SSRV. Only the azimuthal
angles and radial angle change depending on whether the random vector is a SSRV or an SIRV.
In context of the radar problem, we are dealing with N complex samples or 2N quadrature

components. The results presented in this section are applicable when N is replaced by 2N,

4.6 Conclusion

In this chapter we have pointed out a method to obtain the PDF of correlated non-Gaussian
random vectors arising in the problem of radar clutter modeling. The theory of SIRPs has been
used to develop the multivariate PDFs. Various techniques have been presented to obtain SIRV
PDFs. Several examples are provided to illustrate these techniques. Finally, we have obtained
the PDF of the quadratic form of a SIRV and we have shown that this PDF remains unchanged
regardless of whether we are dealing with an SSRV or an SIRV. We have also established that the
quadratic form contains all the information that is required in order to identify the SIRV PDF'., As
a consequence of this result, the problem of an SIRV (multivariate) distribution identification has

been reduced tc the equivalent identification of the univariate distribution of the non-negative

quadratic form.




Chapter 5

Computer Generation of Simulated
Radar Clutter Characterized as SIRPs

5.1 Introduction

This investigation is motivated by a desire to simulate correlated non-Gaussian radar clutter.
Various investigators have reported experimental results where non-Gaussian marginal proba-
bility density functions (PDF') have been used to model the clutter. Usually, radars process N
samples at a time. Statistical characterization of the clutter requires the specification of the
joint PDF of the N samples. In addition, the clutter may be highly correlated. Hence, the joint
PDF must take into account the correlation between samples. Statistical characterization of the
clutter is necessary if an optimal radar signal processor is to be obtained. For use of the well
known likelihood ratio test, it is necessary to have closed form expressions for the joint PDF of
the IV clutter sarnples in order to obtain the optimal radar signal processor. In most cases, it is
difficult to evaluate the performance of the optimal radar signal processor znalytically when the
clutter samples are correlated and non-Gaussian. Then computer simulation may be necessary.
Therefore, there is a need to develop efficient procedures that facilitate computer simulation
of the clutter. A library of multivariate non-Gaussian PDFs has been developed in Chapter
4, using the theory of Spherically Invariant Random Processes (SIRP) and Spherically
Invariant Random Vectors (SIRV). In view of the large number of parameters that are free
to be specified, the library of multivariate non-Gaussian PDFs can be used to approximate many
different radar clutter scenarios. In this chapter we concern ourselves with the development of

computer simniation procedures for the library of non-Gaussian PDFs obtained in Chapter 4
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so that the performance of any radar signal processor can be evaluated for a variety of differ-
ent clutter scenarios. Another issue addressed in this chapter is performance assessment. of the
simulation procedures. It has been pointed out in Chapter 4 that the quadratic form appearing
in the PDF of the SIRV contains all the information necessary to identify the PDF of the un-
derlying SIRV. We make use of this result in order to assess the performance of the simulation
procedures. Some interesting simulation techniques have been proposed for SIRVs in [31] and
[33]. The technique suggested in [31] makes use of Meijer's-G functions. These functions are
generalizations of Hypergeometric functions which do not lend themselves to the development of
simple and elegant simulation procedures. The technique suggested in [33] requires transforma-
tions from rectangular to spherical co-ordinates and then back again. Secondly, this simulation
procedure involves the use of the inverse distribution function approach for a rather complicated
distribution function. The approach developed in this chapter is simpler to implement than those
proposed in [31] and [33]. In addition, a new approach is proposed for assessing the effectiveness
of the simulation procedure.

In Section 5.2, we review some definitions and background information pertaining to the theory
of spherically invariant random processes. Section 5.3 presents two canonical simulation proce-
dures for generating SIRVs. Performance assessment of the simulation procedures is discussed

i1 Section 5.4. Finally, conclusions are presented in Section 5.5.

‘

5.2 Preliminaries

We begin by restating the definitions for spherically invariant random vector and spherically
invariant random processes. A spherically invariant random vector (SIRV) is a random vector
(real or complex) whose PDF is uniquely determined by the specification of a mean vector, a
covariance matrix and a characteristic first order PDF. Equivalently, the PDF of an SIRV can
also be referred to as an elliptically contoured distribution. A spherically invariant random
process (SIRP) is a random process (real or complex) such that every random vector obtained
by sampling this process is an SIRV. The work of Yao [28] gave rise to a representation theorem
which can be stated as follows (see Theorem 1):

If a random vector is a SIRV, then there erists a non-negative random variable S such that
the PDF of the random vector conditioned on S is a multivariate Gaussian PDF.

We consider the product given by X = ZS, where X = [X;...Xn]7 denotes the SIRV,

Z = [£1...2n]7 is a Gaussian random vector with zero mean and covariance matrix M and
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S is a non-negative random variable with PDF fg(s). Since it is desirable to independently
control the correlation properties and the non-Gaussian envelope PDF, Z and S are assumed to

be statistically independent. The PDF of X conditioned on § is (see eq (3.14))
fxis(xls) = (2x)" ¥ M| ~ks~Neap(- o5 (8.1)

where p is a non-negative quadratic form given by p = xTM~2x and |M| denotes the determinant
of the covariance matrix M. The PDF of X is given by (see eqs (3.15) and (3.16))

fx(x) = @) F M| tan(p) (5.2)
where
hn(p) = [ s~Meap(— 55 fs(s)ds. (5.3)

The PDF of the random variable S is called the characteristic PDF of the SIRV. Therefore, it is
apparent that the PDF of a SIRV is compietely determined by the specification of a mean vector,
a covariance matrix and a characteristic first order PDF. In addition, the PDF of the SIRV is a
function of a non-negative quadratic form. However, unlike the Gaussian case, dependence on
the quadratic form is more complicated than the simple exponential. Therefore, an SIRP can
be regarded as a generalization of the {familiar Gaussian random process. We point out that the
covariance matrix of the SIRV is given by £ = ME(S?) where E(5?) is the mean square value of
the random variable S. It is seen that the covariance matrix of the SIRV normalized by the mean
square value of S is the covariance matrix of the Gaussian random vector. Note that it is possible
to set the covariance matrix of the SIRV equal to that of the Gaussian random vector by requiring
that E(S?) be equal to unity. The desired non-Gaussian PDF can be obtained by choosing fs(s)
appropriately. Thus, it is seen that the SIRV formulation for radar clutter modeling affords
independent control over the non-Gaussian PDF of the clutter and its correlation properties.
Several techniques are available in Chapter 4 for obtaining hn(p). Note that the Gaussian
random vector is a special case of an SIRV and is obtained when fs(s) = §(s — 1) where 6(t)
is the unit impulse function. An interesting interpretation of the representation theorem is that
every SIRV is the modulation of a Gaussian random vector by a non-negative random variable.

Many of the attractive properties of Gaussian random vectors also apply to SIRVs. The most

relevant property of SIRVs for the purpose of computer simulation is the closure property under
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linear transformation [28] stated below (see Theorem 2):
If X is an SIRV with characteristic PDF fs(s), then

Y=AX+b (5.4)

is also en SIRV with the same characteristic PDF. It is assumed that AAT is a nonsingular
matriz and b is a known vector having the same dimension as X.

Theorem 2 provides us with a powerful technique for simulating SIRVs. A white SIRV is
defined as one that has a diagonal covariance matrix. In other words, the components of the
white SIRV are uncorrelated but not necessarily independent. We can start with a zero mean
white SIRV X having identity covariance matrix and perform the linear transformation given by
eq (5.4) to obtain an SIRV Y having a non-zero mean and desired covariance matrix £. The

matrix A and the vector b are given by

A = ED}
(5.8)

where E is the matrix of normalized eigen vectors of the covariance matrix X, D is the diagonal
matrix of eigen values of £ and py is the desired non-zero mean vector.

In many instances it is not possible to obtain fg(s) for an SIRV in closed form, even though
its existence is guaranteed. In such cases, an alternate approach must be used in order to
characterize the SIRV. The following theorem can be used to completely characterize a white

SIRV having zero mean and identity covariance matrix (see Theorem 3):

A random vector X = [X;...Xn|T is a zero mean white SIRV having identity covariance
matriz if and only if there ezist random variables R € (0,00), © € (0,2r) and &, € (0,7),

(k=1,...N - 2) such that when the components of X are expressed in the generalized spherical




coordinates
X1 = Rcos(®y)

Xi = Rcos(®y) [T} sin(®;) (1 <k N-2)
Xn-1 = Rcos(©) TN 72 sin(®;) (5.6)
Xn = Rsin(0©) [TN7? sin(®;)

then the random variables R, © and ®; are mutually and statistically independent having PDF's
of the form

PN=1

fa(r) = g v (rt)uln)
Jo.(d) = ——ﬁ)-sm” 1=k () [u(Br) ~ u(dp — 7)) 5.7)
fe(0) = (27)7 [u(8) — u(0 - 27)]

where I'(v) is the Eulero Gamma function and u(t) is the unit step function.

As a consequence of Theorem 3, any SIRV with zero mean and identity covariance matrix
can be represented in generalized spherical coordinates which are mutually and statistically
independent regardless of the SIRV considered. Also, note that the PDFs of © and &y, (k =
1,...N - 2) are functionally independent of the white SIRV considered. Only the PDF of R
changes from one white SIRV to another. Note that R? = ¥ X2 = XTX. Hence R is the
norm of the SIRV.

Another important feature of the SIRV is that the quadratic form appearing in its PDF contains
all the information necessary to identify the PDF. It foilows that knowledge of the PDF of the
quadratic form of the SIRV is sufficient to identify the PDF of the corresponding SIRV [34] (see
Theorem 4):

The PDF of the quadratic form appearing in eq (5.2) is given by

fe(p) = pFhn(p) (0<p< ) (5.8)

2‘3‘1“( n?

and remains unchanged regardless of whether or not the SIRV is white.
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The theorems reviewed in this section will be made use of in the proposed simulation approach,
discuesed in Section 5.3, and in assessing the performance of the simulation procedure, discussed
in Section 5.4.

In the context of the problem of radar clutter modeling and simulation, the bandpass process
Y(t) = Re[V(t)exp(jwot)] can be expressed in terms of the equivalent complex, wide sense
stationary random processes ¥(t). More precisely, we obtain N complex samples by sampling
the complex random process Y (t) = Yi(t) + jY.(t), where the subscripts ¢ and s denote the in
phase and out of phase quadrature components. This is equivalent to working with a real vector
of 2N quadrature components which is the approach taken in this chapter. Therefore, the results
presented in this section are applied to the problera of radar clutter modeling with N replaced
by 2N. For ease of reference, the library of non-Gaussian SIRV PDFs obtained in Chapter 4 is
repeated here. However, hn(p) for those SIRVs for which the characteristic PDF is known are
listed in Table 5.1. The corresponding characteristic PDF's are listed in Table 5.2. Table 5.3 lists

han(p) for those SIRVs whose characteristic PDF is unknown.

5.3 Two Canonical Simulation Procedures for Generating SIRVs

In this section, we concern ourselves with two simulation procedures for generating the SIRVs
listed in Table 5.1 and Table 5.2. The first simulation procedure to be discussed is applicable
when the characteristic PDF, fg(s), is known. For each of the PDFs listed in Table 5.1, the
characteristic PDF fg(s) is tabulated in Table 5.3, where E(S$?) = 1. Since the representation
theorem results in the covariance matrix of the SIRV being given by £ = ME(S?), the choice
of E(S8?) = 1 makes X identical to M, the covariance matrix of the Gaussian random vector
Z. However, as listed in Table 5.4, the PDFs commonly encountered in statistical tables do not
have unit mean square value. In order to obtain the random variable S, having unit mean square
value and the corresponding PDF fg(s), we generate the random variable V having PDF fy(v)
and mean square value E(V?) = a?, and perform the linear transformation S = {- to obtain the
desired S. In Table 5.1, and Table 5.4, the scale parameter b, as well as the shape parameter v
are identical in both cases and u(v) denotes the unit step function. The simulation procedure

for these SIRV PDF's is fairly simple and is stated below:
5.3.1 Simulation Procedure for SIRVs with Known Characteristic PDF

(1) Generate a white zero mean Gaussian random vector Z, having

identity covariance matrix.




(2) Then generate a random variable V from ¢he PDF fy(v). Denote

the mean square value of V by a2.

(3) Normalize the random variable V by a to obtain the modulating

random variable S. In other words generate S = {—

{4) Generate the product giver by X = ZS. At this step, we have a

white SIRV having zero mean and identity covariance matrix.

(5) Finally, perform the linear transformation given by eq (5.5) to

obtain the SIRV Y with desired mean and covariance matrix.

Fig 5.1 shows the simulation procedure presented above.

The subroutine RNNOR in IMSL was used for generating the Gaussian random vertor Z.
Interestingly enough, the PDFs listed in Table 4.4 can be related to the PDF of the Gamma
distribution as discussed below. The PDF fy(v) for the K-distributed SIRV is a Chi PDF. We firsi
address the random variable generation for the Chi PDF and then provide the transformations
for obtaining the random variables for the other PDF's listed in Table 4.4.

Consider the standard Gamma distribution given by

fr(t) = I‘( )emp( t) t>0 (5.9)

where o denotes the shape parameter and I'(a) is the Eulero- Gamma function. The random
variable T is readily generated by using the IMSL subroutine RNGAM. The procedure for gen-
erating the Chi distributed random variable V needed for the K-distributed SIRV is summarized

below.

1. Generate the random variable T' from the standard Gamma distribution
of eq (5.9) by using the IMSL subroutine RNGAM.

2. Perform the transformation V = 32@

The PDF fy(v) for the Laplace SIRV is a Rayleigh PDF and is obtained from fy(v) of the
K-distributed SIRV by letting @ = 1. The random variable V for the PDF f,(v) listed in
Table 4.4 for the Student-t SIRV is obtained from the standard Gamma PDF of eq (5.9) by the
transformation V = 7%; and letting @ = v. Finally, the PDF fy{v) for the Cauchy SIRV is
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Table 5.1: hay(p) for SIRVs with Known Characteristic PDF

Marginal PD

Laplace b’ (9. /P) " YKn.1(b/p
Cauchy ;::: +:i

K-distribution | {x &YBLC_ Ky _ ,(by/P)
Student-t 13‘,"“{,,,)1&;)- JI

____Table 5.2: han(p) for SIRVs with Unknown Characteristic PDFs

Margin PDF | han(p
Chi (~2)¥-14 Z,, Gap*~*ezp(~Bp)
N - -1 ke~
G=(k >( D184
A = (ba)"’
[l = lf-’
v < 1
[l Weibull Z, ngpq Nezp(—Ap?)
A=ac
Ci =Tk ()N 47 ( ) r(l;-:+ -N)
b < 2
| Gen. Rayleigh ) ka'b“ N+lozp(-Bp%)
A = p’[‘
B = ﬁ""’a
W D= Shoy(-ymerizigy (F) ey
a2
- oV - N -1 ,
Rician WTZuol ( k ) (=1)*(§)*érczp(-A)
k
6= Theo( &) hoam(ed) 4= i

obtained from fy(v) of the Student-t SIRV by letting » = 1. The procedure for generating the

random variable V needed for the Student-t SIRV is summarized below.

1. Generate the random variable T from the standard Gamma distribution

of eq (5.9) by using the IMSL subroutine RNGAM.

2. Perform the transformation V = ﬁ?
5.3.2 Simulation Scheme for SIRVs with Unknown Characteristic PDF

We now concern ourselves with the second simulation procedure which is applicable when
the characteristic PDF is unknown, as is the case for SIRVs listed in Table 4.2. The alternate

approach makes use of Theorem 3 and the representation theorem. As pointed out previously,
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Table 8.3: Characteristic PDF for SIRVs listed in Table 4.1 [E(S5?) = 1]
ab’aexp( i'—’i-'«)u(a)

[| K-distribution r{é’zg(bu)"'“ezp( L',-‘-)u(c)
| Student-t 128567~ (a8) " +Dezp(~ ghy )u(s) I]

Table 5.4: Related PDF fy(v)

Marginal PDF | fv(v a’ = E(V
Laplace b vezp(~Ld-)u(v) &

{| Cauchy b v=3ezp(—Lz)u(v) [

| K-distribution ﬂ&;(bv)""“ezp( B Yu(v) i

| Student-t it 02 o= ezp(— Ay )u(v) | sl

Gaussian Random Linear Transformation

Number Generator Y= AX+B

Figure 5.1: Simulation Scheme for SIRVs with Known Characteristic PDF
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the PDFs of © and ®; (k = 1,2,..., N ~2) are independent of the white SIRV being considered.
Only the PDF of R changes from one white SIRV to another. As a result, the second simulation
procedure requires the capability to generate the random variable R whose PDF is given by
eq (5.7). Since the Gaussian random vector belongs to the family of SIRVs, a zero mean white
Gaussian random vector Z with identity covariance matrix admits a representation of the form

of eq(5.6). Let Rg denote the norm of the white Gaussian random vector. The simulation

procedure is stated below:

(1) Generate a white, zero mean Gaussian random vector Z having

identity covariance matrix.

(2) Compute the norm Rg = ||Z|| = VZTZ of the white Gaussian

random vector.

(3) Generate the norm R = ||X|| = VXTX of the white SIRV from
the PDF of R given by eq (5.7).

(4) Generate the white SIRV X by taking the product X = Zﬁ%.

(5) Finally, perform the linear transformation given by eq (5.5) to

obtain the SIRV Y with desired mnean and covariance matrix.

The simulation procedure is shown schematically in Fig 5.2.

Note that this simulation procedure avoids the explicit generation of the variables ©® and
¢, (k= 1,...N —2). The generation procedure for a white Gaussian random vector is
well known. Therefore, we need to concern ourselves only with the development of a suitable
generation scheme for the norm R of the white SIRV X. Generation of the norme R is not trivial.
This is due to the fact that the PDF of R is usually not in a simple functional form. Consequently,
it may not be possible to conveniently evaluate analytically the distribution function and its
inverse. As a result, generation methods based on the inverse distribution function do not offer a
practical solution to this problem. Therefore, in this chapter we generate R by making use of the
approach called the ‘Rejection Method’. The rejection method can be used to generate random
variables whose cumulative distribution functions are not known, but whose PDFs are known
explicitly [49]. The rcjection procedure assumes knowledge of the maximum value of the PDF

of R for a given SIRV PDF and a finite estimate to the range of the PDF of R so that the area
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Figure 5.2: Simulation Scheme for SIRVs with Unknown Characteristic PDF

under the PDF curve is close to unity. These quantities are denoted by c and b, respectively. We
discuss the rejection procedure in detail in Appendix B. The Rejection method is summarized

below:
(1) Generatie a uniform random variate U on the interval (0, ).
(2) Generate another uniform variate U, on the interval (0, c).

(3) If Uy £ fr(Uh), then R = U,. Otherwise, reject U; and return to
step 1.

Note that ihe simulation procedures of Fig 5.1 and Fig 5.2 are canonical in the sense that
their forms remain unchanged from the simulation of one SIRV to another. Even though, the
scheme of Fig 5.2 can be used even when fs(s) is known, the scheme of Fig 5.1 is preferred when
S can be generated easily. The linear transformation of eq (5.5) is a filtering operation. In both
schemes, pre-modulation filtering is equivalent to post-modulation filtering. This results from
the fact that the representation theorem is valid whether or not the SIRV X and the Gaussian

random vector Z are white.




5.4 Performaace Assessment of the Simulation Schemes

In this section we concern ourselves with the performance assessment of the simulation proce-
dures developed in section 5.3. We point out that the sirnulation procedures developed in section
5.3 are exact in the sense that they are derived without approximation from theory. Hence,
departures from the exact SIRVs will depend for the most part on the nonideality of the uniform
random number generators used. Empirical assessment of the simulation procedures is necessary
for practical applications.

One possible approach for assessing the distributional properties of the simulated data is to

perform a hypothesis test on the marginal distributions of the components of the SIRV where
the hypothesis are given by
Hy:The hypothesis that the simulated data is from: the desired distribution
H,:The hypothesis that the simulated data is not from the desired distribution.
For a fixed Type-1 error probability (i.e., the probability that H, is accepted given that Hp is
true) each marginal distribution can be checked by employing one of the commonly used goodness
of fit procedures. Since the components of the random vectors are not statistically independent,
we are now conironted with the problem of developing a goodness of fit test for the multivariate
data. In general, it is very difficult to obtain the overall significance level of the test (i.e., the
probability that Hy is accepted given that Hy is true) for the multivariate goodness of fit testing
procedure.

However, an attractive feature of SIRVs is that the quadratic form p appearing in the SIRV
PDF contains all the information necessary for identifying the PDF of the SIRV. In other words,
knowledge of the PDF of the quadratic form is sufficient to determine the underlying SIRV PDF.
Furthermore, the quadratic form PDF remains unchanged regardless of whether the SIRV is white
or colored. The PDF of the quadratic form appearing in the SIRV PDF is given by eq (5.8). For
the radar problem where we deal with N complex samples or 2N quadrature components, note
that we make use of eq (5.8) with N replaced by 2N. Hence, we base our goodness of fit test
procedure for the generated SIRVs on the PDF of the quadratic form p. Note that we have now
reduced the multivariate problem to an equivalent univariate problem involving the goodness of
fit test for the PDF of the quadratic form.

In the examples presented in this section, we generated m = 1000 realizations of the random

vector Y with N = 2 complex samples and obtained one thousand samples of the quadratic form
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P for each of the non-Gaussian SIRVs whose PDF's are listed in Tablzs 5.1 and 5.3. In each case,
we used the corresponding theoretical PDF of the quadratic form given by eq (5.8) to test for
the distribution of the generated quadratic form. The frequency histograms for the generated
data and the corresponding theoretical PDFs are shown in figures 5.3-5.10. In addition, a Chi-
Square test was performed on the generated data with the Type-1 error fixed at 0.05 and the
null hypothesis was not rejected in each case. The histograms provide a good idea about the
true distributions for large sample sizes. Observe that the empirical PDFs are very close to
the theoretical PDFs. Note that the procedure uvsed in this section to assess the distributional
assumptions of the random samples from the SIRV PDF's is a formal goodness of fit test. Similar

procedures have been proposed to test for multivariate normality in [50] and [51].

5.5 Conclusions

In this Chapter, we have presented two schemes that can be used in practice to simulate
correlated non-gaussian radar clutter when the clutter can be modeled as a spherically invariant
random process. We pointed out that the simulation schernes developed are canonical schemes
and do not change form from the simulation of oine SIRV to another. A new approach, based on
the PDF of the quadratic form appearing in the SIRV PDF, was used to perform a goodness of fit
test in order to assess performance of the proposed simulation schemes. Performance assessment
based on this scheme showed excellent agreement between the theoretical and empirical PDF's of
the quaaratic form. Finally, it was pointed out that use of this technique reduced the goodness
of fit test from a multivariate testing procedure to a univariate testing procedure resulting in

tremendous processing simplicity. Therefore, this procedure lends itself very well to practical

applications.

122




Figure 5.3: Theoretical and Empirical Quadratic form PDFs for Laplace SIRV
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Figure 5.4: Theoretical and Empirical Quadratic lorin PDFs for Cauchy SIRV
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Figure 5.5: Theoretical and Empirical Quadratic form PDFs for K-distributed SIRV
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Chapter 6

A New Method for Univariate
Distribution Approximation

6.1 Introduction

In this chapter we address the problem of approximating the PDF of a sct of random data.
In practice, the clutter PDF encountered in radar signal processing is not known apriori. Con-
sequently, a scheme that appioximates the clutter PDF based on a set of measured data is
necessary. Currently, available tests such as the Kolmogorov-Smirnov test and the Chi-Square
test address the problem of goodness-of-fit for random data. In particular, these tests provide
information about whether a set of random data is statistically consistent with a specified dis-
tribution, to within a certain confidence level. However, if the specified distribution is rejected,
these tests cannot be used for approximating the underlying PDF of the random data. Moreover,
these tests require large sample sizes for reliable res:lts.

In practice, only a small number of samples may be available. Therefore, the scheme used
should be efficient for small sample sizes. A new algorithm based on sample order statistics has
been developed in [50] for univariate distribution identification. This algorithm has two modes of
operation, In the first mode the algorithm performs a goodness-of-fit test. Specifically, the test
determines, to a desired confidence lev i, whether random data is statistically consistent with a
specified probability distribution. In the second mode of operation the algorithm approximates
the PDF underlying the random data. In particular, by analyzing the random data and with-
out any a priori knowledge, the algorithm identifies from a stored library of PDFs that density

function which best approximates the data. Estimates of the scale, location, and shape param-
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eters of the PDF are provided by the algorithm. The algorithm typically works well with small
sainple sizes of between 50 and 100 samples, An extension of this algorithm for the multivariate
Gaussian PDF has been considered in [50] and [52].

In this chapter we describe a new method for univariate distribution approximation. In section
6.2 we present definitions. Section 6.3 describes the algorithm developed in [50] for univariate
distribution identification. The proposed distribution identification algorithm is discussed in
Section 6.4. Section 6.5 proposes a method to estimate the shape parameter based on the

procedure developed in Section 6.4. Finally, conclusions are presented in Section 6.6.

6.2 Definitions
Let fy(y) denote the PDF OF Y which has been standardized in a specified manner. Introduce

the linear transformation defined by
z=fy+a (6.1)

The PDF of X is given by

fx(a) = (259 (62)

where o and 3 are defined to be the location and scale parameters of X, respectively. The mean

pz and variance o, of the random variable X are given by

zr = E
p (X) 63)

‘7: = E[(X ~ pz)?).

Although the mean and the variance are related to the location and scale parameters, note that
the location parameter is not the mean value and the scale parameter is not the square root of
the variance, in general. However, for a standardized Gaussian PDF fy(y) for which the mean is
zero and the variance is unity, the location parameter is the mean of X and the scale parameter
is the standard deviation (square root o_ the variance) of X.

The coefficient of skewness, a3, and the coefficient of kurtosis, a4, are defined to be

. E[(X—ps)?]

Q3 = pe
: (6.4)
RY)

g = —-K——r—uE Xa,‘" .
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It is readily shown that a3 and a4 are invariant to the values of u, and o,. For any PDF that
is symmetric about. the mean, as = 0. For the case of the Gaussian distribution, az = 0 and
aq = 3.

6.3 Goodness of Fit Test

In this section, we introduce a general graphical method for testing whether a set of random
data is statistically consistent with a specified univariate distribution. The proposed method
not only yields a formal goodness-of-fit test but also provides a graphical representation that
gives insight into how well the random data is representative of the specified distribution (null
hypothesis). Using the normal distribution as a reference distribution, the standardized sample
order statistics are represented by a system of linked vectors. Both the terminal point of these
linked vectors and the shape of their trajectories are used in determining whether or not to accept
the null hypothesis.

In this section we first give a brief description of the corresponding test statistic and then
explain the goodness of fit test procedure. For illustration purposes, we assume that the null
distribution is Gaussian. However, the proposed procedure works for any null hypothesis.

Let Xi; k = 1,2,...n denote the k" sample from a Gaussian distribution with mean u and
variance o2. We define

X —X

Vo= o= k=120 (6.5)

where X = LX/n is the sample mean and S = {Z(X; — X)?/(n —1)}*/? is the sample standard
deviation. The standardized order statistics are denoted by Y;., i = 1,2,...n and are obtained
by ordering the Yi; k = 1,2,...n such that ¥j,, € Y3.n € ... € Y. The i linked vector

is characterized by its length and orientation with respect to the horizontal axis. Let X, <

X2n € ... £ Xpun denote the ordered samples obtained by ordering Xi; k£ = 1,2,...n. Let
My, Man,y - - -, Mp.n denote the expected values of the standard normal order statistics, where
Miy = E[u-*-g:-&)-] The length of the i** vector a; ie obtained from the absolute value of the
i** standardized sample order statistic Y;.,, while its orientation 8; is related to m;,. More
specifically, by definition,

(6.6)

6; = 7®(mi.,)

wherte ®(z) = (V2r)"! [Z ca:p(—J;—)Jt is tne distribution function of the standard Gaussian
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distribution. We define the sample points @, in a two dimensional plane by
Qe = (Ur, Vi) k=1,2,...n (6.7)

where Up = Vp = 0 and
Up = 1 55 {Cos(8)}HYinl

Vi = 2 TE {Sin(6:)}|Yiml (6.8)

i=i
k=1,2,...n.

The sample linked vectors are obtained by joining the points Q. Note that @o = (0,0). It should
also be noted that the statistic @, given in eq (6.7) represents the terminal point of the linked
vectors defined above. Figure 6.1 shows the linked vectors obtained for the Gaussian distribution
with n = 6. The null distribution was obtained by averaging the results for 50,000 Monte Carlc
trials. The solid curve in Figure 5.1 shows the linked vectors for the sample distribution while
the dashed curve shows the linked vector for the null distribution. The magnitude and angles of
the linked vectors are obtained from eq (6.6). Note that the angies are independent of the data
and depend enly on the sample size n. Only the magnitudes of the linked vectors are dependent
on the samples drawn and change from one trial to another.

For a typical set of ordered samples (i.e., ordered samples drawn from the null distribution)
it is reasonable to expect that the sample linked vectors would closely follow the null pattern.
If the ordered set of samples is not {rom the null distribution, the sample linked vectors are not
expected to closely follow the null pattern. Hence, the procedure provides visual information
about how well the ordered set of samples fit the null distribution.

An important property of the @, statistic is that it is invariant under linear transformation.
In particular, we consider the standardization used in eq (6.5). Let Z; = aX; + b, where a and
b are known constants. Let S’ denote the sample standard deviation of the samples Z;. Then,
it is readily shown that X ‘;Y! = 'z"ST
advantage of this property is that the PDF of @, = (U,, V,) depends only on the sample size

n and is unaffected by the location and scale parameters. Since it is difficult to determine the

2l The invariance property follows as a consequence. The

joint PDF of U, and V, analytically, it is necessary to obtain empirical results.
Assuming that the conditions under the central limit theorem are satisfied, the marginal PDFs

of U, and V, can be approximated as Gaussian, in the limit of large n. In addition, it is assumed
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that the joint PDF of U, and V,, is approximately bivariate Gaussian. Consequently, all that is
needed to determine the bivariate PDF is the specification of E(Uyn), E(V,), E(UnVa), Var(Us)
and Var(V,). Drawing samples from the Gaussian distribution, it has been shown empirically
in [50] that for 3 < n < 100
E(U,) =0
E(Va) = py w5 0.32660]1 -+ 2412031
E(UnVn) =0 (6'9)

o o2 oy 0:02123 4 001765
Var(Uy,) = o ~ 28082 4 2550

Y - 2 0.04427 0.0951
Var(V,.) = g, ~ ami il 2nE

Since U, and V, are approximately bivariate Gaussian for large or moderate sample sizes, their

joint PDF can be written as

t

o, valttns 0n) = (27)"(000)  e2p(~3) (6.10)

where o ,

= Un (U0 = Bu)
t= it o (6.11)

Let ¢t == ty. Then the equation
o= Yo 4 (P ) (6.12)
°T o2 o) '

is that of an ellipse in the v,, v, plane for which

o viltny 1) = (27) (0u0) eap(=2), (6.13)
Points that fall within the ellipse correspond to those points in the u,, v, plane for which

fon valiiny 00) > (21)(0000) eap(~2), (6.14)
Let

a = F{T > tg) = P(un, vn, fall outside the ellipse given by e¢ (6.12)). (6.15)
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It is well knowa that the PDF of the random variable T defined by eq (6.11) has a Chi-Square

distribution with two degrees of freedom (53] and is given by

t
fr(t) = 0.5ezp(--3). (6.16)
Hence,
. a=1-exp( —~£22). (6.17)

Consequently, ty = —2In(1 — a). Thus, eq (6.12) becomes

ui | (vn~ Ho)?
;-'?:- 4+ —-——0-.3——-'— = *2’”(1 - a). (6‘18)

o is known as the sigaificance level of the test. It is the probability that Q, falls outside the
ellipse specified by eq (6.18) given that the data is coming from a Gaussian distribution. 1 -- &
is known as the confidence level and the corresponding ellipse is known as the confidence ellinse.

Eq (6.12) can be written in the standardized form

2 — 2
1= oy (U0 - p) (6.19)

2
Uuto O’gto

where the lengths of the major and minor axes are given by maz [04\/To, oy+/Tc] and min [oy\/To, 0yy/
respectively. From eq (6.17), observe that smaller values of o correspond to larger values of .
Consequently, the confidence ellipses become larger as the confidence level is increased.

For a given sample size n {n < 100) approximate values of u,, 62 and o? can be obtained
from eq (6.9). The confidence ellipse of eq (6.18) can then be used to make a visual test of the
null hypothesis. If the terminal sample point falls inside the ellipse, then the data is declared as

o being consistent with the Gaussian distribution with confidence level 1 — a. Otherwise the null
hypothesis is rejected with a significance ievel a.

A major difficulty in determining the joint PDF of U, and V,, is that the coefficients of skewness
and kurtosis of U, and V, (see Table 5.1) indicate that the (Gaussian approximation for the
bivariate PDF may not be satisfactory for n < 10. ‘The empirical bivariate PDF of U, and
Vo were obtained by using 50,000 Monte-Carlo trials for n==3, 10, 20,30, 50 and 100. The
corresponding probability contours are shown in Figure 6.2. The same procedure is used even

when the null distribution is diferent from the Gaussian distribution. However, note that the
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standard Gaussian distribution is always used as the reference distribution for determining the

angles 6;.

6.4 Distribution Approximation

In this section we present a graphical procedure for approximating the underlying PDF of a
set of random data based on the goodness-of-fit test procedure discussed in section 6.3.

Following a similar approach to that ouilined in section 6.3, random samples are generated
from many different univariate probability distributions. For each specified distribution and for a
given n, the statistic @, = (U,, V,) given by eq (6.8) is obtaincd for varivus choices of the shape
parameter. Thus, ecach distribution is represented by a trajectory in the two dimensional plane
whose coordinates are U, and V,,. Figure 6.3 shows an example of such a representation. Twelve
distributions, namely Gaussian (1), Uniform (2), Exponential (3), Laplace (4), Logistic (5),
Cauchy (6), Extreme Value (7), Gumbel type-2 (8), Gainma (9), Pareto (10), Weibull (11) and
Lognormal (12), are represented in this chart. The value cf (, at cach point of the trajectories is
obtained by Monte-Carlo experiments using the standard Gaussian distribution as the reference
distribution for determining the angles 8;. The results are based on averaging 1000 triais of 50
samples from each distribution. The samples from each distribution are obtained by using the
IMSL subroutines for specified values of the shape parameter. Since the procedure is location
and scale invariant, the trajectory reduces to a single point for those PD¥#'s which do not have
shape parameters but are characterized only in termes of their location and scale parareters. By
way of example, the Gaussian, Laplace, Exponential, Uniform and Cauchy PDFs are vepresented
by single points in the U, ~ V,, plane. However, those PDFs which have shape parameters ar=
represented by trajectories. For a given value of the shape paratneter, a single point is obtained
in the U, — V,, plane. By varying the shape parameter, isolated points are determined along
the trajectory. The trajectory for the PDF is obtained by joining these poirts. In a sense the
trajectory represents a family of PDFs having the same distribution but with different shape
parameter values. For example, the trajectory corresponding to the Gamma distribution in
Figure 6.3 is obtained by joining the points for which the shape parameters are 0.2, 0.3, 0.5, 0.7,
1.0, 2.0, 3.0, 4.0, 6.0, 10.0. As the shape parameter increases, note that the Gamma distribution
approaches the Gaussian distribution. The representation of Figure 6.3 is called an identification

chart. Some distributicns such as the 8 disiribution and the SU-Johnson systera of distributions,

have twe shape para.neicrs. For these cases, the trajectorizs are obtained by holding one shape




parameter fixed while the other is varied. For these distributions, several different trajectories
are generated in order to cover as much of the U, — V;, plane as possible. For certain choices of
the shape parameters, two or more PDFs become identical. When this occurs, their trajectories
intersect on the identification chart.

It is apparent that the identification chart of Figure 6.3 provides a one to one graphical
representation tor each PDF for a given n. Therefore, every point in the identification chart
corresponds to a specific distribution. Thus, if the null hypothesis in the goodness-of-fit test
discussed in section 6.3 is rejected, then the distribution which approximates the underlying
PDF of the set of random data can be obtained by comparing @, obtained for the samples with
the existing trajeciories in the chart. The closest point or trajectory to the sample @, is chosen
as an approximation to the PDF underlying the random data. The closest point or trajectory
to the samnple point is determined by projecting the sample point @, to neighboring points or
trajectories on the chart and choosing that point or trajectory whose perpendicular distance

from the sample point is the smallest. The complete approximation algorithm is summarized as

follows.

1. Compute Y as specified in section 6.3
2. Obtain the standardized order statistic Y;.,.

3. Compute U, and V,, from eq (6.8).

4. Obtain an identification chart based on the sample size n as discussed

in this section. Plot the sample point @), on this chart.

5. Compare the sample point (J,, with the existing distributions on the
chart. The nearest neighboring point (or trajectory) on the chart is

used as an approximation to the PDF of the samples.

The accuracy of this procedure can be increased by including as many distributions as possible
in the identification chart. However, it is emphasized that this procedure does not identify the

underlying PDF. Rather it identifies a suitable approximation to the underlying PDF.

6.5 Parameter Estimation

Once the distribntion of tlie samples is approximated, the next step is to estimate its pa-

rameters. The method discussed in section 6.4 lends itself for estimating the parameters of the
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approximated distribution. We present the estimation procedure for the location, scale and shape

parameters in this section.
6.5.1 Estimation of Location and Scale Parameters

Let f(x;a, B, ) denote the distribution which approximates the PDF of the set of random data,
where o and § are the location parameter and scale parameter, respectively of the approximating
PDF. Let X;, denote the ordered statistics of X from a sample of size n, The standardized

ordered statistics are defined by
Xl':n -

vvi:n =

Let
HBim = E["Vsm]

Then
E[)(n'm] = ,Bl-‘i:n + a

We consider the following statistics
Ty = ¥ Cos(6;) Xin
Ty =3;5tn(0;) Xim
where ; is the angle defined in eq (6.6). The expected values of T and T; are
E[Ti]) = 2, Cos(8:)[Buin + o]
E[Ty] = ¥2; Sin(6:)[Bpin + af.

These can be written as
E(T)) =ac + b8

E(T;) =ca+dp

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)

(6.25)




where
a=Y,Cos(0)
b= i |':r.C 6,
i pire.Cos(6)) (6.26)
c=Y,; Sin(6;)

d =3 pinSin(6;).

Because the standardized Gaussian distribution is used as the reference distribution for 8;, it can

be shown that a = 0. It follows that
j -
(6.27)

& = E[T;-df)

- ¢

where the symbol A is used to dente an estimate. For n sufficiently large (i.e., n > 50), suitable

estimates for E[T] and E[T3] are

Bt =1 (6.28)

E[Ty) = T,
Estimates for b and d rely upon an estimate of y;.,. fi;.n is obtained from a Monte Carlo simulation
of W;., where W;., is generated from the known approximating distribution f(z;0, 1) having zero
location and unity scale parameters. f;., is the sample mean of W;,, based upon 1000 Monte

Carlo trials. Having fi;.,, the estimates for b and d are given by

b= finCos(6:) (6.29)

d = 50 finSin(8).

The scale and location parameters are then estimated by application of eq (6.27).
6.5.2 Shape Parameter Estimation

In this section we preseni an approximate method for estimating the shape parameter of the
approximating PDF. This procedure can be used only when one of the shape parameters is
unknown. Let 7 denote the shape parameter of the approximating PDF being estimated. Since

U, and V, are location and scale invariant, the point @, depends only on the sample size n and
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the shape parameter 4. The expected value of U, and V,, can be expreased as

E(Un) = ¢1(ny7)
E(Va) = wa(n,7)

(6.30)

where ¢ (., .) a(., .) are some functions of 4y and n. For a given sample size n and shape parameter
0 the corresponding expected point ¢, (n, ), wa(n, 70) can be determined approximately in the

Un — V, plane.
The proposed shape parameter estimation method is based on finding a point such that

Un:¢l(n’5’) (6 31)

Va = ‘PZ("" '?)

where 4 is the sample estimator of 4. However, in many instances the sample point may not
correspond exactly to a particular trajectory. In such a case, let E(Q1,) = (uy,v) E(Qzn) =
(ug, v7) denote the expected points corresponding to two different shape parameter values vy = 7
and v = 43. It is assumed that the sample point lies in between the points corresponding to 7
and v2. Assuming that linear interpolation provides a satisfactory approximation, the estimate

of the shape parameter corresponding to the sample point is given by

X (72 =1 )(2o ~ 1)
PR S (6.32)
where
— {A(Va—v) 442w +Un}
To =
(4%+1) (6.33)
A — !”2""-’1!

T (ua-wm)’
The accuracy of the procedure can be improved by employing a non-linear interpolation method.
It must be emphasized that the shape parameter estimation procedure presented in this section

is an approximate procedure.

6.6 Conclusions
This chapter has presented a new algorithm for analyzing univariate random data. The algo-

rithm provides a graphical representation for goodness-of-fit test which determines whether a set

141




V v
O ] Ei .4 ! - .- P
] 0
! —
Q, \1\
' "
Q. 4- it ; . ? 5 u
e N6
. g,
| AN
0 . 2 1 o' '( ) 9{‘ u'
| Z3
J l ,"
9
l/ Lali
0.0 - 0 L 8, u

1, Figure 6.1: Linked Vcctor Chart:Dashed lines Py= Null Li id Li
| S b e Ve ) ull Linked Vectors, Solid Lines P, =

of random data is statistically consistent with a specified PDF. Also, a graphical procedure is
presented for the problem of approximating the underlying PDF of a set of random data. Esti-
mation of location, scale and shape parameters of the approximating PDF have been discussed.
Finally, it must be pointed out that the chief advantage of the algorithm presented in this chapter

is that it works well for small sample sizes between 50 and 100 samples.
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Figure 6.2: Empirical Distribution of Qn for several values of n
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Chapter 7

Distribution Approximation of Radar
Clutter by SIRPs

7.1 Introduction

This investigation is motivated by a desire to characterize correlated non-Gaussian radar clutter
by approximating the underlying probability density function of the clutter. Various investigators
Liave reported experimental results where non-Gaussian marginal probability density functions
(PDF) have been used to model the clutter. Usually, radars process N samples at a time.
Statistical characterization of the clutter requires the specification of the joint PDF of the N
samples. In addition, the clutter may be highly correlated. Hence, the joint PDF must take into
account the correlation between samples. Statistical characterization of the clutter is necessary
if an optimal radar signal processor is to be obtained. For use of the well known likelihood ratio
test, it is desirable to have closed form expressions for the joint PDF of the N clutter samples
in order to obtain the optimal radar signal processor. The joint PDF of the N clutter samples
can be easily specified when the clutter is Gaussian. However, when the clutter is non-Gaussian
and is correlated, many different joint PDF's of the clutter samples can result in the same set of
marginal (univariate) distributions having a specified non-Gaussian behavior. The multivariate
non-Gaussian PDF can be specified uniquely only when the randem variables are statistically
independent.

Specification of the multivariate PDF is generally a non- trivial problem with no simple best
solution [54]. As explained earlier, the theory of Spherically Invariant Random Processes (SIRP)

provides a powerful mechanism to obtain the joint PDF of the N correlated, non-Gaussian clutter
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samples. Many of the tractable properties of the Gaussian randoin process also apply to SIRPs.
SIRPs have received considerable attention over the past two decades since most of the elegant
and mathematically tractable properties of the multivariate Gaussian distribution generalize to
this class of distributions. Applications of SiRPs can be found in the random flight problem [27],
signal detection [29], speech signal modeling [30] and radar clutter modeling [32] and [34).

In this Chapter, using certain properties of SIRPs, we adopt an algorithm developed in [50]
to identify the underlying distribution of a given set of data. Section 7.2 provides background
information about SIRPs. In Section 7.3 we present a procedure for the goodness of fit test
for PDFs arising from SIRPs. The proposed distribution identification algorithm is discussed
in Section 7.4. Section 7.5 proposes a method to estimate the shape parameter based on the

procedure developed in Section 7.4. Finally, conclusions are presented in Section 7.6.

7.2 Characterization of Elliptically Symmetric Distributions
A random vector X = [X;, X3, ... Xn]7 is said to have an elliptically contoured distribution

if the characteristic function of X can be expressed as
bx (w) = exp(jwT p)¥(w Tw) (7.1)

where w and p is an N by 1 vector, ¥ is an N by N positive definite matrix and ¥ is an
arbitrary function [37]. In many practical applications involving Monte Carlo experiments, a
more restricted class of elliptically contoured distributions are used becausc of their relative
simplicity. This class of distributions called elliptically symmetric distributions (ESD) and has
a PDF of the form

fx(x) = k[B|"*hn(p) (7:2)

where k is a normalization constant chosen so that the volume under the curve of fx(x) is
unity, p = (x — u)¥E~1(x — p) is a non-negative quadratic form and hn(p) is a non-negative,
monotonically decreasing, real valued function. The random vector X having a PDF of the form
of eq (7.2) is also called a spherically invariant random vector (SIRV). The constant k is equal
to (27r)‘%". In this Chapter we shall restrict our attention to SIRVs. A representation theorem
for SIRVs [28] states that if a randcru vector is an SIRV then there exists a non-negative random
variable S such that the PDF of the random vecter conditioned on S is a multivariate Gaussian

PDF. In mathematical terms, we consider the product given by X = ZS where X is an SIRV, §
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is a pon-negative random variable having PDF fs(s) and Z is a Gaussian random vector having

the same dimensions as X. Then, we can express hy(p) as

hu(p) = [~ s Neap(~Fg)fs(s)ds (13)

where p is the previously defined quadratic form. The PDF of the random variable S (i.e. fs(s))
is called the characteristic PDF of the SIRV. We define a spherically invariant random process
as random process (real or complex) such that every random vector obtained by sampling this
process is a SIRV having the same characteristic PDF.

In the special case when X is the identity matrix, eq (7.2) represents the PDF of a sphericaily
symmetric random vector. This is due to the fact that the PDF in such a case is a function of
xTx. Elliptically symmetric distributions are related to spherically symmetric distributions in
an interesting way. If Y is a spherically symmetric random vector, then the random vector X

which has an ESD can then be obtained by the linear transformation [28]
X=AY +b (7.4)

where A is an N by N matrix such that
3 =AAT (7.5)

and b is a known N x 1 vector. Thus, in inany applications it is sufficient to deal with spherically
symmetric distributions and generalize the results to elliptically symmetric distributions.

Finally, the PDF of the quadratic form appearing in eq (7.2) is given by

fr(p) = hu(p) (p) (7.6)

2‘*r(”)

where I'(a) is the Eulero-Gamma function and u(p) is the unit step function [34]. It has also
been pointed out in Chapter 3 that the PDF of the quadratic form remains unchanged regardless
of whether the PDF of the random vector is spherically symmetric or elliptically symmetric. For
example, in the multivariate Gaussian case, the PDF of the quadratic form is the well known
Chi-square distribution with NV degrees of freedom. Therefore, for a given N, the SIRV (or

spherically symmetric distribution) is uniquely characterized by the quadratic form. In order to
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identify the PDF of the underlying SIRV it is sufficient to identify the PDF of the quadratic
form. This attractive property of SIRVs enables us to study various disiributional aspects of
the corresponding multivariate samples. When a radar uses coherent processing, the joint PDF

of the 2N quadrature components is of interest. The above results are then applicable with N

replaced by 2N.

7.3 Assessing the Distributional Properties

In modeling real world data, the first step is to determine the most appropriate PDF that
approximates the data. In the univariate case, the fit and assessment of the goodness of fit
for various distributions has been studied extensively and several methods are available for this
purpose. However, limited success has been achieved for the multivariate situation. Although a
number of multivariate distributions have been developed, the multivariate Gaussian distribution
has been the focus of much of the techniques for multivariate analysis [55].

Assessment of the distributional assumptions for multivariate data is a non trivial problem.
Several techniques have been proposed to assess multivariate Gaussianity. In a recent paper
Ozturk and Romeu [52] a review of the methods for testing multivariate Gaussianity is given.
Many of these methods can be modified or generalized to develop goodness of fit methods for
elliptically symmetric distributions. If a random vector Y is an SIRV, then the corresponding
marginal distributions must be identical except for their location and scale parameters. Based
on this property, one can use the the standard univariate goodness of fit testing procedures to
assess the degree of similarity of the marginal distributions of the multivariate data. However,
such an approach does not provide a way to assess the joint distribution of the components of
the multivariate sample. Recall from S~ction 4.5 that SIRVs can be characterized in terms of the
quadratic form P. Equation (7.6) provides an imfmrtant property for developing goodness of fit
test procedures for 3SIRVs. Specifically, if thc PDF of P can be identified, then the corresponding
PDF of the SIRV can also be identified. In fact, many tests for assessment of multivariate
Gaussianity are based on the use of this quadratic form [56]. By use of this technique, note
that the multivariate distribution identification problem is reduced to a corresponding univariate
distribution identification of the quadratic form. Any of the classical goodness of fit testing
procedures like the Kolmogorov-Smirnov and Chi-Square tests can be used to address the problem
of distribution identification of the quadratic form. However, the requirement of large sample

sizes for specifying the parameters of the distribution and low power of the test necessitate use
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of alternate procedures that are more efficient.

A general algorithm was developed in [30] to test for univariate and multivariate normality.
In this section we propose the use of this algorithm for performing the goodness of fit test for
SIRVs. The procedure is summarized here for completeness. Let X = [Xy, X;3... Xn]7 denote
a vector of observations. For each chservation vector of size n, we compute the corresponding
quadratic form P; (¢ = 1,2,...n). Our goal is to test whether the transformed sample belongs to
a certain distribution F(p;a, 8,7) where a, B are the location and scale parameters, respectively
and v is the shape parameter.

The standardized order statistics are denoted by ¥;.,, 1 = 1,2,...n and are obtained by ordering

the Yy; £k =1,2,...n such that ¥}, < Yo, € ... €Yo,

Pl':n e ‘P-)

- _
Yi:ﬂ - SP (7'7)

where P and Sp are the sample mean and sample standard deviation, respectively of P, k =
1,2,...n. The i** standardized ordered quadratic form sample is represented by a point Q; =

(Ui, Vi) in a two dimensional plane where

S
I

L5 cos{n®(min)}Yim
n Lzt €os{m(m;in) }|Yiul 78)

=
i

5 Tia1 sin{m®(mjin) } Y|

In the above equations = = 3.14159, ® is the distribution function of the standard normal PDF
and m;., is the expected value of the j** order statistic from the standard normal PDF.

For a given multivariate sample, the points Q; (¢ = 1, 2,...n) are plotted and joined to obtain
a linked vector chait. Similarly, using the expected values of the statistic Yj.,, (j =1, 2...,n)
under the null hypothesis an expected linked vector chart can also be obtained. The proposed
test is based on comparing the sample and expected linked vectors. If the null hypothesis is true,
then we expect that the sample linked vectors will follow the expected linked vectors closely.

Finally, a formal goodness of fit test is performed using the terminal point of the expected
linked vectors (i.e @, = (Un, V1)). A confidence contour for the true point is obtained to provide a
test hypothesis. If the terminal point of the sample does not fall inside the 100(1—a)% confidence
ellipse, then the corresponding null hypothesis is rejected at the « level of significance. Note that

the @, test provides an interesting graphical representation of the data. An example of such
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graphical representation is given in Fig 7.1 tor testing a multivariate Gaussian distribution with
n = &) and N =4.

It should be noted that the @, statistic is location and scale invariant. In other words it is
independent of the location and scale parameters. However, it depends on the shape parameter
of the null distribution. Assessment of the distributional assumptions of distributions that have
shape parameters is conceptually different from the corresponding problem for distributions that
do not have shape parameters. 1n the former case, we test whether the sample comes from
a particular member of a family of distributions while in the latter case, we test for a single
distribution. One possibility for dealing with this problem is to speci{ly the value of the shape
parameter and perform the test in the usual way. If the shape parameter cannot be specified,
then an adaptive approach whicli uses the sample estimate of the shape parameter must be
employed.

Advantages of using the @, procedure are explained in [50]. Usually the classical goodness of
fit tests end up with either rejecting or accepting the null hypothesis. An attractive property of
the @, procedure is that it provides some information about the true distributions if the null
hypothesis is rejected. Using this property an algorithm for characterizing and identifying the

distributions can be developed. The next section explains these ideas.

7.4 Distribution Identification of SIRVs

Following the same procedure described in Section 6.4, where the reference distribution was
Gaussian, an identification chart can be generated for each of quadratic form PDFs of the SIRVs
listed in Tables 7.1 and 7.2. Recall from Chapter 4 that the PDF of the quadratic form is
invariant to the choice of 4 and X. Hence, for simplicity, the trajectories for the PDFs of the
quadratic forms of the SIRVs lisied in Tables 7.1 and 7.2 are obtained by generating the SIRVs
having zero mean and identity covariance matrix. Each point on a trajectory is obtained by
averaging the results of 2000 Monte Carlo trials of size 100. As before, PDFs which do not have
shape parameters are represented by a single point in the U-V plane while those which have
shape parameters generate a trajectory in the U-V plane by changing the shape parameter.

An example of the identification chart is given in Fig 7.2 for V = 4 and n = 50 where the
expected values of @, = (U, V,,) is plotted for various distributions. The Gaussian distribution
was used as the reference distribution for determining the angles of the linked vectors. The SIRVs

listed in Table 5.1 and Table 5.2 are included in the chart and labeled by number. It is noted
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Table 7.2: SIRVs obtained from the margmal characteristic function

T Marginal PDF -'lzN(P) 1
{Gaussian

zp(—5)
Laplace bm(b\/ﬁ)"”KN_l(b,/ﬁT
2V0(4+N
Cauchy ———(5——2;‘/__“”” T
K-distribution | & OEX— Ky _o(by/p)
Student-t %ﬁv@;

that the multivariate Gaussian (1), Laplace (2) and Cauchy (3) distributions are represented by
single points on the chart while the multivariate K-distribution (8), Chi (9), Generalized Rayleigh
(10) Weibull (11) and Rician (12) are represented by trajectories. The Student-t distribution (4,
5, 6, 7) with degrees of freedom 3, 5, 10 and 15, respectively, is also shown in the chart. The

trajectories for each distribution were obtained by joining 10 points resulting from the use of
the distributions with parameter values listed in Table 5.3. Each point in the chart is obtained
by simulating 2000 samples from the corresponding distributions. The methods developed by
Rangaswamy et al. [35, 57] were used to generate the multivariate samples.

The identification chart that provides an interesting display for identifying and characterizing
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Figure 7.1: Goodness of Fit Test using the Q, Procedure. 90, 95 and 99% contours for
the Gaussian distribution. Broken Line = Null distribution Pattern
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Figure 7.2: Identification Chart for SIRVs (n=2000, N=4) 1 = Gaussian, 2 = Laplace, 3
= Cauchy, 4, 5, 6, 7 == Student-t, 8 = K-distribution, 9 = Chi, 10 = Generalized Rayleigh,
11 = Weibull, 12 = Rician




Table 7.3: Shape Parameters of the SIRVs Used for the Identification Chart

-Distribution | 0.1, 0.2, 0.3, 0.4, 0.5,0.7,0.9, 1.1, 1.5, 1.9
Chi 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5, 0.6, 0.75, 0.95
Gen. Rayleigh | 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0, 1.5, 2.0
Weibull [ 0.3,04, 06, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0
Rician 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9

the distributions. Also, relationships between the various distributions are clearly seen. For
example, as their parameters are varied, certain distributions approach the multivariate Gaussian
distribution. Also, for appropriately chosen parameters, the multivariate Weibull distribution
and the Generalized Rayleigh distribution coincide. For a given N-variate sample of size n,
the statistic @, based on the sample quadratic forms can be computed and plotted on the
identification chart. Then the nearest distribution to the sample point is identified as the best
candidate for the underlying true distribution of the data. An example of such an identification

I is shown in Figure 7.2 where a well known data set (i.e. Iris Setosa [58]) is used to obtain a value
for @, and is denoted by the point S. The Iris Setosa data consists of four measurements taken
from 50 plants. It is seen from Figure 7.2 that the best candidate for approximating the data is
the multivariate Chi (9) distribution.

We point out that there are other methods which can be used for the distribution identification
problem. A commonly used technique is the @ — @ plot. To identify the underlying distribution
the sample quantiles are plotted against the expected quantiles of a reference distribution. Then
the resulting shape of the plotted curve is taken as a basis for identifying the corresponding
candidate for the true distributions. However, the identification is made on a subjective basis.
Even then the procedure is not very easy. Another well known approach for identifying the
distribution is to characterize them via their skewness (a3) and kurtosis (a4) coeflicients. In this
case, all the distributions are represented by points on the as- a4 plane and the sample data
point is compared with the theoretical distributions in the same way as in the @, procedure.
However, estimates of a; and a4 are known to be highly sensitive to extreme observations and

therefore, large sample sizes are necessary to perform the identification for a given degree of

accuracy.

7.5 Parameter Estimnation

It is well known that the maximum likelthood estimate of the covariance matrix of a Gaus-

sian random vector is the sample covariance matrix. Interestingly enough, it has been shown

154




in [59]that the maximum likelihood estimate of the covariance matrix £ is the same sample
covariance matrix used in the Gaussian case to within a multiplicative constant. Because Q,
is scale invariant, the identification procedure for SIRVs can proceed without knowledge of the

multiplicative constant.
From eq (7.6), it is clear that the expected value of the quadratic form can be expressed as

E(P) = ¢(N,7) (7.9)

where 7 is the shape parameter of the distribution. For those SIRVs where ¢(.) can be evaluated

in closed form and is invertible, the sample mean of P, denoted by P can be used to estimate

the shape parameter according to
5 =P, N}. (7.10)

where P = ;‘; i=1 Fi. For example, in case of the K-distribution, we have E(P) = 2uN where v
is the shape parameter of the K-distribution. Clearly, the shape parameter can be approximated
as b = %. Unfortunately, it is not always possible to obtain an invertible closed form expression
for ¢(.,.). The shape parameter estimation procedure suggested here is not suitable in such a
case. An alternate method for the parameter estimation problem is then needed.

In this Chapter we propose to use the @, statistic to obtain an approximate estimator for
the shape parameter. The underlying procedure is explaned in [50] and is summarized here.
Let the points (U1, V1) and (Uz, V;) denote expected points corresponding to parameters v; and
2 respectively, of a given SIRV. If these points are the nearest points on the curve for the
identified distribution to the sample point Qn == (U,,V,), then by using a linear interpolation,

an approximate estimator of v is given by

. (72 = m)(zo — Uh)
v+ 7.11
where
Ty = {A(Vn“'}’;)?t“:;ul‘fun}
(7.12)
ViV,
A= U2=U)

The accuracy of the proposed estimator for 4 depends on the distance between the sample point

@~ and the corresponding curve. If necessary, the approximation can be improved by using
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non-linear interpolation methods.

7.6 Conclusions

In this Chapter we have addressed the problem of distribution approximation of radar cluttcr
under the assumption that the clutter can be characterized as a SIRP. First and foremost, we
have shown that the multivariate distribution identification problem for SIRPs can be reduced
to an equivalent univariate distribution identification problem of a non-negative quadratic form,
resulting in considerable processing simplicity. A new algorithm which provides a graphical
representation for the goodness of fit test and the distribution identification has been used.
This algorithm, while conceptually simple, is extremely efficient while dealing with small sample
sizes. Therefore, it is suitable for use in a variety of practical applications. Finally, based on this

algorithm, a new approach has been proposed for estimating the shape parameter of SIRPs.
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Chapter 8

Weak Signal Detection - Literature

Review

8.1 Weak Signal Problem

In radar applications it is found that the received target signal is contaminated with clutter
and thermal noise. The received signal due to undesired refiections from land, sea, atmosphere
etc. is called clutter. The thermal noise, which is generated by the receiver hardware, is typically
modeled as a Gaussian random process. This kind of noise is always present. Depending upon
the situation, the clutter may or may not be modeled as a Gaussian random process. Also,
the power associated with the background clutter may be orders of magnitude larger than the
receiver thermal noise or the desired signal power.

In modern radars, temporal and spatial processing are used to separate the target from the
clutter. For example, the received signal from a target having a radial velocity with respect to
the radar will experience a Doppler shift. If the target spectrum appears in the tail of the clutter
spectrum, then conventional frequency domain techniques can be used to extract the target from
the clutter. Similarly, if the spatial spectrum of the target does not overlap that of the clutter,
performance will be limited by the background noise rather than the clutter. In this research use
is also made of temporal and spatial processing. However, we are interested in the case where the
target temporal and spatial spectra cannot be separated from the clutter. By definition, this is
referred to as the weak signal detection problem. Given a Range-Doppler-Azimuth cell in which
a target is to be detected, it is assumed that the signal is larger than the backgrouna nvise but

much smaller than the clutter. Hence, even after temporal and spatial processing, performance
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i# limited by the clutter.

Therefore, it becomes very important to identify the clutter plus noise probhability density
function. This density function is the N** order joint density function of the received radar
samples ry,rg, ..., 7y in the absence of a target signal. The received waveform can be modeled as
a random process. Since we will be sampling this process at N time instants, we need to have the
knowledge of the N** order joint probability density fanction (PDF) of the N random variables.
In this research effort the performance measures of radar receivers are analyzed, given the N
order PDF associated with the random process.

In the hypothesis testing problem, where we have to decide whether the target is presert or
absent, two kinds of errors can occur: 1) A false alarm which occurs when it is decided that the
target is present when it is not, 2) A miss which occurs when it is decided that the target is not
present when it is. In many radar problems the chosen criterion is to fix the false alarm at a
certain value and then to maximize the probability of detection. In statistical decision theory
the Likelihood Ratio Test (LRT) is optimum for these kinds of problems. The LRT evaluates the
likelihood ratio which is the ratio of the N** order joint PDF under the alternative liypothesis
H; (signal present case) to the N** order joint PDF under the null hypothesis Hy (signal not
present case). This ratio is then compared to a certain threshold to make a decision. Under
the constraint of a fixed false alarm, the Neyman-Pearson receiver obtaired on the basis of the
likelihood ratio test is the optimum receiver.

The components of the received vector r can be written mathematically as

Hy:ri = s;4+d; (8.1)
Hy: r, = di i=12.N (8.2)

where s;, and d; represent the desired signal return and the additive disturbance, respectively.
Also, let fr(r|H:), fa(r|Ho), fp(d), denote the N** order PDFs of R under H;, R under Hp
and the disturbance. In general, the disturbance may be composed of clutter plus noise. Since
it is not possible to separate the clutter and noise components of the disturbance when the
disturbance is measured, we focus on the disturbance itself. As the signal becomes very weak

(i.e. as the signal to clutter plus noise ratio (SCNR) approaches zero), the numerator and the
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denominator of the LRT tend to become identical. This is due to the fact that

fr(c|Hh) = fg(zlHo) = fp(d). (8.3)

This will result in the likelihood ratio being approximately equal to unity independent of the

received signal. Thus, if T, denotes the likelihood ratio,
Po= [ fr.(TH)dty~ Pe= [ fr.(T. Ho)dt, (8.4)
" n

where Pp and Pr represent the detection and false alarm probabilities. Therefore, the LRT
performs poorly in the limit as the signal strength tends to zero.

Even though the problem of weak signal detection in radar applications is of great interest,
most of the literature by various researchers has been devoted to strong signals in a clutter
plus noise background. Optimal and/or very good sub-optimal schemes have been proposed to
achieve the desired level of performance. Only a relatively small fraction of the literature is
devoted to the design of practical schemes for the detection of weak signals. In this report we
present a general theory for developing practical detector structures for weak signal problems.
Also, analysis of performance is carried out for a specific case where the background clutter is
assumed to have a multivariate student-T distribution and the signal to clutter plus noise ratio
(SCNR) is very small. In such problems the concept of the Locally Optimum Detector (LOD)
is used to come up with the decision rule which is also a ratio test. For a deterministic signal, a
statistic is obtained by taking the ratio of the derivative with respect to the signal strength of
the N** order joint PDF under H, to the N** order joint PDF under Hy. The limit of this ratio
as the signal strength tends to zero is evaluated to obtain the test statistic for the decision rule.
In the random signal case the test statistic is a ratio, in the limit as the signal strength tends
to zero, of the second derivative with respect to the signal strength of the N** order joint PDF
under H, to the N order joint PDF under Hy. This approach is valid when it is known that
the SCNR ratio is very small but the actual value of SCNR is unknown. Thus, the LOD turns
out to de a Uniformly Most Powerful (UMP) test for the class of problems where the SCNR is
in the neighborhood of zero. The theory of LODs is explained in detail in the next chapter.
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8.1.1 Literature Review

The concept of the localiy optimum detector was first established by Neyman and Pearson in
their paper ‘Contributions to the Theory of Statistical Hypothesis Testing’ [60, 61]. Subsequently
this was applied to statistical communication and signal processing by several researchers.

David Middleton’s work [62] on the LOD is based on expanding the LRT in terms of a power
series expansion and truncating the series to a first order approximation. In the limit as the
signal tends to zero, the canonical structure of the locally optimum detector is established with
very weak restrictions on the statistical properties of signal and noise. The analysis applies
equally well to non-Gaussian as well as Gaussian, non-stationary as well as stationary processes,
for stochastic as well as deterministic signals, continuous as well as discrete time signals and
for combinations of signal and noise that need not be additive. In fact, the general character
of the results is independent of the particular nature of the signal and wcise, although specific
noise distributions determine the specific detector structures. Middleton shows that the locally
optimum detector is a threshold detector with very strong optimality features in the limit of an
infinitely large number of samples. However, in cur research, we are interested in applications
where the number of samples may not be too large.

For a variety of detection problems, Jack Capon [63] concludes that implementation of the 1,LOD
is either less, or no more complicated than the Neyman-Pearson detector. Other researchers
in this area such as John Thomas [64], Saleem Kassam [48], Conte and Longo [65], Shishkov
and Penev [66] have all obtained performance of the LOD under the asymptotic condition of
an infinitely large number of samples. These researchers have modeled the noise samples as
independent, identically distributed randomn variables. This enables them to have a closed form
expression for the N* order PDF of multivariate non-Gaussian noise. Applying the LOD test,
they have arrived at the decision statistic. Using the central limit theorem, the test statisti.
is shown to approach Gaussian in the limit of very large sample size. Then the performance
measures are evaluated. Shishkov and Penev [66] have considered correlated interference, but
have vestricted themselves to multivariate Gaussian interference. Modestino and Ningo [47)
were amongst the earliest researchers to consider weak signal detection arising from bandpass
processes. They have modeled the received signal as statistically independent complex sampies
and then obtained the joint density function of the inphase and quadrature components. Under

the assumption that the clutter density function is circularly symmetric, they transform the joint
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density function to an equivalent one involving the envelope and phase. Martinez, Swaszek and
Thomas(54], have considered the case where the noise has a multivariate Laplace distribution,
where any non-negative definite matrix can be used tc model the correlation between the random
variables. However, they do not analyze the receiver peiformarnce for small sample sizes which

is the case of practical interest.

8.2 Non-Gaussian Correlated Data

Previously, general analytic expressions for the various applicable N'* order joint non-Gaussian
PDFs which allow for correlation between the variables were unavailable. As a result, researchers
in the past assumed independence between the samples. By assuming independence between the
samples, they were able to get the N** order PDF as a product of the marginals. If we carry
out the locally optimum test using the N** order density function based upon independence and
evaluate its performance, it is found that an unreasonably large number of samples is needed
for acceptable performance. This arises because independent samples imply a white spectrum.
Consequently, space-time processing cannot be used to filter the target from the clutter. Based on
the concept of Spherically Invariant Random Processes (SIRP), analytical expressions for some
Nt order joint Non-Gaussian PDFs which allow for correlation between the variables are now
available. The SIRP was explained in great detail in Chapters 3-7. Since theoretical evaluation
of receiver performance is very difficult for non-Gaussian PDF's, it is done through computer
simulation. The computer simulaiion procedure for receiver performance evaluation is explained
in chapter 11. This performance is compared with that of the Gaussian receiver to see the gain

obtained due to the added ccmplexity of the locally optimum detector.




Chapter 9

The Locally Optimum Detector

The usual criterion in radar problems is to inaximize the probability of detection under a fixed
false alarm probability constraint. This receiver is called the Neyman-Pearson receiver. The
receiver implements the Likelihood Ratio Test (LRT) and compares it against a threshold whose
value is designed to give the desired false alarm probability. In particular, consider the received

vector BT = [R1, R3, ..., Rn]. Introduce the two hypotheses Ho and H, as described below:

Hy: i = ci+n (9.1)
Ho:ri = 0s;4+¢ci+n; 1=12.N. (9.2)

Thus, Ho pertains to the hypothesis that the received signal consists solely of clutter plus noise
while target signal is assumed to be present under the hypothesis H,. Let the joint pr bability
density function of Ry, R, ..., Ry under hypothesis Hy (k = 0,1) be denoted by fg(r|Hx). The

Neyman-Pearson receiver performs the LRT

_ Jg(clHh) %
10 = Jy(eiHa) 4 (93)

where 7 is specified to satisfy the false alarm constraint
Pe= [ fr(tHoydt, (9.4)
n

and fr,(t,|Hi) is the conditional probability density function of the test statistic 7}, given hy-

pothesis Hp.
However, when the signai strength is very small relative to the clutter plus noiwse, the joint
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density function of the received random variables under H; approaches that under Hy. Then the
numerator and the denominator of the LRT become approximately equal leading to numerical
difficulties in discriminating between the two hypotheses. The Neyman-Pearson test is of course
optimum. However, the form of the LRT can be rearranged to yield a test statistic which is
more sensitive to perturbations in the received data. This gives rise to the concept of the Locally
Optimum Detector (LOD). In this chap.ter the concept of the LOD is developed in detail using two
approaches. The first approach is based on a power series expansion of the LRT and the second
approach derives the LOD by an optimization using the principle of Lagrangian multipliers. it
is shown that both approaches yield identical detector structures, though starting from different
theoretical points of view. Ae the signal strength becomes weaker, the LOD becomes optimum

even though its performance mav not be as good as desired for a fixed sample size.

9.1 The Series Approach
9.1.1 The Known Signal Case

Let the additive clutter component C = [Cy,Cy,...,Cn)T be stationary and independent of
the stationary white Gaussian background noise N = [N,, Ny, ..., Ny]T. The noise variance o3
is assurned to be several orders of magnitude below the clutter variance o2 which is taken to be
unity without loss of generality. The signal is assumned to be of the form 05, where S is known.
The components of S are chosen to have |S;|* = i so that the positive parameter 0 is a measure

of the signal to clutter ratio (SCR) defined by

2] ¢.12
SCR = ?-g-'i- = 6. (9.5)

[

Because the clutter and noise are statistically independent with the noise assumed to have zero
mean, the covariance matrix of the disturbance vector D = C + N, denoted by Mp, is equal
to the covariance matrix of the clutter Mc plus the covariance matrix of the noise My. Since
the noise is white and stationary, the covariance matrix of the noise is of the form My = o2/,
where | is the identity matrix. When the clutter is highly correlated, the covariance matrix M¢
tends to be ill-conditioned. However, Mp will not be ill-conditioned because, by adding the small
value 0 to the diagonal elements of Mc, the smallest eigenvalue of Mp is guaranteed to be no
smaller than o3, Also, addition of My to Mc ensures that the disturbance spectrum will limit

performance even in those frequency intervals where the clutter spectrum is negligible.
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With this approximation the LRT takes the form

fe(clHy) _ fp(c—8s) %
B ) T T R A 09)

As mentioned previously, when 6 <« 1, the signal 6.5 represents a small perturbation in the

received vector under hypothesis H,. Hence, fa(r|H:) approximately equals fgp(r|Ho). As a
result, T}, is relatively insensitive to 63. One approach at deriving a weak signal detector is to
expand the numerator of the LRT in a Taylor series.

For this purpose, let y = r — @s. Then

fe(r|Hy) = fp(y). (9.7)

Expanding fp(y) in a Taylor series about the received vector r, we obtain

3fD
fo(y) = fp(o)+ Z Yk = Ty) ) 2ly) ly=r
kl"l ykl
& fp(y)
+ (Yry — 70 )Wk, — =] .
2 k?-:-l gr-;l l o, )ay‘h Iy, lg
4
1 N N‘ N 3"fo(g)
+ — - T -7T LRX) n " r n/ ¢ — =
n! 3;1 ka=1 k§1 s 03 ba)--(u * )0.% OYry - OYka I! -
+ ... (9.8)
This can be expressed in vector form by introducing the operator
T ol %
-r Vv, = - Tk ) 9.9
(¥-1)'V, E__:l(yk 2F (9.9)

where the subscript y on V indicates partial differentiation with respect to the components of y.

The expansion of fp(y) about the point y = r then becomes

fole) + [(y = 0 Vilfo(W)ly=
7= DV o) e

fo(y)

i

+ + +

;ll-!-[(_y_ — )"V fo(¥)ly=r
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i "i (y-c Tvv]an_(E)lv-—r. (9.10)

Recall that y = r. ~ 03, where 0 and g are constants. Note that y—r=—bsand 5%: = 5—’;—;—. Then

N )
(=), = 3 (~0s)5,- = —0s"V, (9.11)

k=1

where the subscript r on V indicates partial differentiation with respect to the components of r.

It follows that the expansion may be written as

folr - 0s) = fp(r) + )f_f( 179, o). (9.12)

In order for the above expansion to be meaningful, it is necessary that all the derivatives in the

above expansion exist.
Thus, using the above expansion of fp(r — 0s), the Taylor series expansion of the likelihood

ratio about the received vector r in equation 9.6 can be written as

1+[§‘

n-—l

AT (o) (9.13)
The first term, being a constant, can be combined with the threshold without loss of optimality.
The LOD is defined to be the term corresponding to n = 1 of the infinite summation. For
0 < 1, it is assumed that the remaining terms in the summation are negligible. On the other
hand, because r is random and the partial derivatives of the PDF may be large, the remaining
terms may not be negligible. However, it is assumed that this occurs with small probability. The

resulting detector structure can be expressed as
sV, ) fp(r) N
Tion(z) = 28 2, (9.14)

where 7 is chosen so as to achieve the desired false alarm probability.
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9.1.2 The Random Signal Case

When the signal is random, fr(r|H;) is obtained by integrating the joint density function
frs(r,8|Hy) over all possible values of 3. Hence,

(rIHl) = / fﬁ.S(.’.‘J IHl / fBIi-g(rlﬁi Hl)fi( )ds = E [fﬂ.lgi*g(tlﬂv M, )] (9'15)

where E, denotes the expectation operation carried out with respect to the random vector S.
Because the denominator of T, in equation ( 9.6) is independent of g, the Taylor series expansion
of the likelihood ratio can now be written as

r)-—1+[z

n=] n' f

Once again, as in the known signal case, the unity term appearing in the test statistic can be put

into the threshold. If we make the assumption that the expected value of the signal vector is 0,

E [(s"V,)") fp (). (9.16)

then the n = 1 term in the infinite series of equation ( 9.16) goes to zero. Thus, for the random
signal case, where the signal vector has zero mean the LOD is defined to be the second term
(n = 2) in the infinite series. As in the deterministic signal case, 0 is assumed to be small enough
such that the remaining terms of the series are negligible with high probability. Consequently,
the LOD for the random signal case is given by

02
2fp(r)

Talr) = 57— BTV (0] 21" (0.17)

where T,; represents the secoud order term in the Taylor series expansion of T,. The above

equation can be rewritten as

s BV V) (o)) 2 (9.18)

)= 57 i

where, as before, n” is chosen to achieve the specified false alarm probability. Lumping the

constant 4';— with the threshold and recognizing that

E,[(s"V,)) = E,[VTs s7V,]| = VT PV,, (9.19)
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where P is the covariance matrix of the signal vector, then the detector structure for the locally

optimal test becomes

Trop(r) = viP Z’([Lf)l_?.(l'-)] :'?:”' (9.20)

9.2 The Lagrangian approach
Consider again the hypotheses testing problem defined in equation ( 9.2). Let us define a

nonrandomized decision rule ¢(r) such that

1; H, true (target present)
$(r) = (9.21)

0; Ho true (target absent).

This amounts to partioning the decision space into two regions, S, and Sp. A target is declared
if the vector 1 is present in the space 5. If it falls in the space Sy, then the decision is made that
the target is absent. The probability of detection equals the probability that the nonrandomized
decision rule equals unity, given that hypothesis H, is indeed true. 'This probability will, in
general, be a function of 8, the signal to clutter ratio. Denoting 3(0) as the probability of

detection we have
Py = (0) = plo(z) = 1] = [ 8(c)falelHy)dr. (9-22)
((9) is defined to be the power function of the test. The false alarm probability is given by
Pe = pl(r) = 11Ho] = [~ 4(2)falr|Ho)dr = o. (9.29)

The optimization problem to be discussed in the next section imposes the constraint that the
false alarm probability be equal to a. « is also defined to be the significance level of the test.
9.2.1 The Known Signal Case

As discussed earlier, in the limit as the signal strength tends to zero, the probability of detection
becomes approximately equal to the probability of false alarm. Therefore, instead of maximizing
the probability of detection, one approach is to maximize the slope of the power function (5(8))

curve at the point @ equal to zero. The function to be maximized and the constraint are given
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in the following two equations. Maximize
0p(6
D50 = (2 [ 900 (el Hi oo (0.24)

subject to the constraint

[ #@ alciHodr = o (9.25)

We also require that the test be uniformly most powerful (UMP) in the sense that ¢(r) b
independent of @ for small neighoorhoods in the vicinity of 8 = 0. Notice that there is a
derivative with respect to § outside the integral in equation ( 9.24). If the function fg(r|H,) is

a well behaved function such that its derivative exists at all points, th.: derivative can be moved

inside the integral resulting in

80/ T')fR(TIH1)dT-—/ ¢( )fR(rIHl)dr -I—/ é(r) 3fR(0| 1) dr. {(9.26)

Because of the UMP requirement, ?%%'-2 = 0 and the first integral in equation (9.26) integrates

to zero. It follows that
D[ st ateime = [ g2 8l (9.27

Given the function %Qh:o to be maximized along with the false alarm probsbility constraint,

the functional forn. of the maximization problem using the Lagrange multiplier approach is

maz [ [~ o) LB 1o 1yt~ [ oo (el Holde] (9.28)

where 71 is the Lagrange multiplier. Expression (9.28) can be rewritten as

ma ([ o 2EEI) o oot oo + ne (929

To maximize the above integral, the decision regions should be chosen such that the integrand

is always positive. In other words, the decision regions are chosen such that

Ofa(clHy),
IRy % el o). (9.30)
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As was pointed out in the previous section, fg(r|H;) is identical to fp(r — 8s). Therefore, the

decision rule becomes

Ofpir—0s i
pE=28)1, o 2 st (9.31)

'The locally cptimum detector is defined to be that detector which implements the ratio test
) fp(r-oa)l o
=0 >
—2 " 2. 9.32)
oD ‘

The Lagrange multiplier n is chosen to satisfy the false alarm constraint. Note that

Sfo(r —0s) = fp(ry — 081,75 — 33, ...,rn — UsN). (9.33)
As a result,
Ofp(r—0s) _ Ofp(r—0s)9(r—0s1) + 8fp(r — 83) 8(rz — 0s,)
60 - 6(1‘1 - 981) a0 6(1'2 - 082) 30
+ Ofp(r — 0s) d(rn — Osn)
d(rn — Osn) a4
N fp(r—0s)
241 B(re = O.Sk) (—sk). (9.34)
Consequently,
(7] -0 N.a
Yple20), o 52 el - (479, ), (9.35
Thus, the locally optimum detector can also be written as
_ _ "V fp(r) % -
Tiool®) === m A" (%:30)

It can be seen that this detector is identical to the one in equation (9.14) obtained through the

series approach.
9.2,2 The Random Signal Case

Consider a random s'gnal § and let its joint PDF be denoted by fs(s). Also, without loss
of generality, we can make the assumption that the signal vector has zero mean and that each

component of the vector has unit variance. Given the signal vector S the joint density function
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on the received vector under hypothesis H; is

fr(cls, Hy) = fp(r — 03). (9.37)

The power function for the locally optimum test was given in the previous section in equation
(9.22). However, in the random signal case the unconditional density function fr(r|H,) is ob-
tained by integrating out the random vector § from the joint PDF fg g(r, 3|H1) = fr(rls, H1)fs(s).

Use of equation (9.37) results in
80) = [ [” #()nlc - 0s)fs(s)dr ds. (9.38)
The false alarm constraint is once again given by
| #©)fa(tlHo)dr = . (9:39)

As before, we wish to maximize 3—6}%‘2)[9:9. If the function fp(r — 0s) is a well behaved function

such that its derivative exists at all points, then

W) - ™ [” sy 228 g s (9.40)
It follows from equations (9.35) and (9.36) that
op(e 7]
o=~ [~ [ s> 2D 50 . (9.41)
k=1
Because of the zero mean assumption
/_ : sufs(2)ds = 0. (9.42)
We conclude that 5
0
PO oo =0 (9.43)

independent of the choice of ¢(r). Therefore, to maximize the ability of the power function to

increase in the vicinity of the origin, we maximize %ﬂlho = (. As before, assuming that the
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role of integration and differentiation can be interchanged,

2
38ﬂ0(’0) L[t Halr ) f“g;, %) ¢ ()dr ds. (9.44)
However from equation (9.34)
Ofp(c—bs) _ 0 §~Ofp(r—09)
o602 T G0 O(ri—0s) " "
- AN aafg_(r——Os) a(r; —0s;),
h ?;,?;1 d(r; — 03;)d(r — 0sy) g ()
_ Sagh_ p(r—0s)
B {3, fV;; B(r; — 03;)0(rs — Bsy) (9.45)
Hence, 8 fp(r — 03) N agfp( ) ;
gl ‘°’,§§1 Trary % = (V2 V) fp(n). (9.46)

Then the second derivative of the power function at the origin takes the form

3;‘;(,")19_0 [ [ #e)VTa s fp@) fs(e)dr de = [ $(r)EL(Ve £ V,)flr) dr.
(9.47)

Using the approach of Lagrange multipliers to maximize the function in equation ( 9.47) along

with the constraint { 9.39), the optimization problem can be written as
maa( [ H)E(VTs 5™V fo(0)dB +nle ~ [ (o) fp(dell (948)
The above expression can be rewritten as
maa{ [ ¢(r)[EL(V72 87V,)fo(r) - nip()ldr] + na. (949)

To maximize the integral the decision regions have to L = chosen such that the integrand is always

nonnegative. The resulting decision regions yield the inequalities

EL(V7s 8790 fole) 2 nilc). (9.50
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If the covariance matrix of the signal vector is denoted by F, then the locally optimum detector

can be written as

Trop(r) = (Ve PVe)fp(r) ?’7‘ (9.51)
fo(r) Ho

As a general rule for deriving locally optimum tests, note that we maximize at the origin the first
non-vanishing derivative of the power function. For the known and the purely random signal

cases the first non-vanishing derivative is the first and the second derivative, respectively.

9.3 Special Cases

In this section LOD structures will be derived for two special cases. In the first it is assumed
that the N random variables in the disturbance vector D are statistically independent. With this
assumption, the joint PDF of the N random variables is obtained as a produci of the marginal
density functions of the individual random variable. In the second the /N random variables are
modeled as arising from an SIRP. This model enables us to write the joint PDF of the random
variables analytically, accounting for the correlation between the random variables. The locally
optimum detector structures are derived for both cases. It turns out in both cases that the
detector can be expressed in a canonical form. This canonical expression is derived for both the

known and the random signal cases.
9.3.1 The Known Signal Case
9.3.1.1 Independent Random Variables

From equation ( 9.32), the LOD structure in the known signal case is given as

3!0(?:—02)'0 o M
-] =3, 9.52
folr) & (6:52)
Let the N random variables in the vector D be independent such that the PDF of the i** random
variable is fp,(d;). Therefore, the conditional joint density functions of the N received random

variables are given by

N
fR1 .R:....,Rn(rl’ T2y 000y erHO) = rI fDi(ri) (953)
=1
N
fn,.R,.....RN("x,Tz, ---,TN|H1) = H Ip,(ri — 0s;). (9.54)
=1
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The numerator in the ratio test of equation ( 9.52) is evaluated as

ARl o = 1Lt 0l = 402 [T 1) 541 (a5

=l 1=1

Thus, from equation (9.52) the LOD statistic for independent random variables is given by

al fo )
TLOD(rla T2y eeey TN) Z 31 ‘ (956)

where f,',‘. (ri) denotes the derivative of fp,(r;) with respect to r;. The above equation for the
LOD statistic is the canonical form obtained when the random variables are independent. For
different density functions, fp,(r;), the detector will be different, although its structure remains

the same. The canonical form of the detector is shown in Fig. 9.1.
9.3.1.2 Random Variables Arising from an SIRP Distribution

When the random variables of the disturbance are drawn from an SIRP distribution, the joint

PDF can be written as
1

where p = d"M~1d, M is the covariance matrix for the N random variables and hn(p) is a

positive valued, nonlinear function of p. The numerator of the ratio test in equation { 9.52) is

given by
Ofp(r—0s), 0 1 1
ST e = Gy T (Moo = o g @ eme: (035)

In terms of § and d = r — 03, the quadratic form p equals (r — 03)TM-'(r ~ 0s). From the chain

rule for differentiation we have

From the expression for p
g—gloao = -2(s"M~'r). (9.60)

Making use of equations (9.58-9.60) the LOD statistic in equation (9.52) becomes

Tuoo(r) = -2(§;TM"L)%% (9.61)
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Figure 9.1: Canonical form of LOD assuming known signal and independent random
variables.
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where hy(p) denotes the derivative of the function hx(p) with respect to the argument p. The
LOD statistic in equation (9.61) represents the canonical structure when the disturbaice is
modeled as an SIRP. The nonlinear function Ax(q) depends on the particular joint density

function used to model the disturbance. The canonical structure for the detector is shown in

Fig. 9.2.
9.3.2 The Random Signal Case
9.3.2.1 Independent Random Variables

The locally optimum detector is given by equation ( 9.51) when the signal is random. Rewriting

equation ( 9.51) the LOD structure is

Tion(e) = 22 e 2, (9.62)

P is the random signal covariance matrix. For convenience, the signal random variables are
assumed to be independent in which case the covariance matrix P is diagonal. Let the diagonal
elements of the matrix P be represented by o?, ¢ = 1,2,..., N. Because the disturbance random
variables are also assumed to be independent, the joint density function fp(r) is again given by

the product of the marginal density functions of the individual random variables. Specifically,

N
fo(z) = I fou(r) (9.63)
=1
Also, when P is diagonal,
5?
vipv, = Za, o (9.64)

Using equations (9.62-9.64) and following the same steps as in the known signal case, the LOD

statistic can be derived as

Tuon(z) = §"? jﬁ; E::; (9.65)

where the double prime indicates second derivative with respect to the argument. The canonical

structure derived above is shown in Fig. 9.3.
9.3.2.2 Random Variables Arising from an SIRP Distribution

When the disturbance vector is modeled as having an SIRP distribution, the joint PDF and
the LOD structure are given by equations (9.57) and (9.62), respectively. Since the constant

terms in the joint density function cancel out in the numerator and denominator of the ratio test
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in equation (9.62), the LOD statistic is obtained by evaluating

T
Tpop(r) = (e I;:('F),;W(p)n (9.66)

The locally optimum detector statistic that. results from the above equation can be written
as

= 2hn(P)Su | 4hn(p) §5 1y (9.67)
Tionlt) = =310y + () &t M)

where Sys represents the sum of all the elements of the matrix M~? and M represents the .
i** column of M~!. The canonical structure of the detector is shown in Fig. 9.4.
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Figure 9.4: Canonical form of LOD assuming random signal and random disturbance
arising from an SIRP.
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Chapter 10

Determining Thresholds for the
Locally Optimum Detector

10.1 Introduction

The hypothesis testing problem for deciding whether or not a target is present is given by
equations (9.1-9.2) in Chapter 9. For weak signal applications, it was shown that the Locally
Optimum Detector is useful in coming up with a decision rule. For the known signal case,
the LOD structure is given by equation (9.32). Since the test statistic is a nonlinear function
when fp(z|Ho) and fp(r|H,) are multivariate non-Gaussian density functions, it is not possible,
in general, to analytically evaluate in closed form the threshold 7 for a specified false alarm
probability. Given the probability density functions (PDF) of the test statistic denoted by T,

under hypotheses Hy and Hp, the detection and false alarm probabilities are

Pp = /n°° Fr(t|Hy)dt (10.1)

Pe= [ fr(tiHodt (10.2)

Pp and Pr are represented by the shaded areas shown in Fig. 10.1. As indicated in the figure
Pr is typically much smaller than Pp.

In practice, the density function of T is not known in advance. For example, depending
upon various conditions such as terrain, weather etc., the clutter may be from Gaussian, K-
distributed, Weibull or some other probability distribution. It has recently been shown [50] that

approximations for the PDFs on T can be determined experimentally using a relatively small
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Figure 10.1: Shaded areas indicating Py and Pp.
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number of samples (ag: 50-100 samples give good fits depending on the distribution). Because
the number of samples required by Ozturk’s technique is small, it is unlikely that actual data
samples will be from the extreme tails of the PDFs. Consequently, the good fit mentioned above
applies to the main body of the density function.

In order to establish the threshold for a specified P, it is necessary to accurately know
the behavior of the tail of fr(¢|Hp). The threshold can be determined through Monte Carlo

techniques. Unfortunately, the number of trials M required is given by the rule of thumb

10
M> . 0.
> 5 (103)
Hence, if Pr = 107°, at least one million trials should be generated. Clearly, this is not a very
desirable situation. In this Chapter a new approach is developed for experimentally determining
the extreme tail of fr(t|Ho), where the number of samples required is several orders of magnitude
smaller than that suggested by equation (10.3). Once the tail of fr(t|Hy) has been estimated,

the threshold can be determined by use of equation (10.2).

10.2 Methods for Estimating Thresholds
10.2.1 Estimates Based on Raw Data

In this section we consider some commonly used threshold estimates. These estimates are
called raw estimates and are already included in some statistical package programs (eg: the

UNIVARIATE procedure in the SAS package).

Let X; < X, €... £ X, denote the sample order statistics from a distribution function F(z).
Let p denote the desired false alarm probability. Also, let n(1-p) = j + g where j is the integer
part of n(1-p). We denote the threshold estimate based on the k** procedure to be described

below by n,f,"). Four different threshold estimates are given as follows:

i) = (1-g)X; + 9 X4 (10.4)
r,,(}) = X, where k is the integer part of [n(1 - p) + 1/2] (10.5)
17’()3) = (1~6)Xj+5Xj+1,5=0ifg=0; §=1ifg>0 (10.6)

o = X + (L =8)(X; + Xj41)/2 6=0ifg=0;6=1ifg>0.  (10.7)

It is known that all of the above methods are asymptotically equivalent. Thus, if a large

sample size is used (where for example M is determined from equation (10.3)), the choice of the
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best method is no longer critical. However, in an empirical study [67], it has been shown that
17,(,“) outperformed the other estimators when g = 0. It is noted that the methods based on the
above estimators are restricted by the condition that 1 < n(1 — p) < n — 1. This implies that
the smallest value of the faise alarm probability p cannot be lower than 1/n. Consequently, the
threshold corresponding to the smallest false alarm probability which can be estimated by these
procedures depends on the sample size. Thus, for a reasonable size of n, estimation of thresholds

for small false alarm probabilities cannot be made when these methods are used.
10.2.2 Estimates Motivated by the Extreme Value Theory

Extreme value distributions are obtained as limiting distributions of largest (or smallest) values
of sample order statistics. Assuming independent trials, if X; € X; £ ... € X, are order
statistics from a common distribution function F'(z), then the cumulative distribution function

of the largest order statistic is given by
Ga(z) = P(Xa £ 2) = [F(2)]". (10.8)

It is clear, as n — oo, that the limiting value of G, (z) approaches zero if F(z) is less than 1 and
unity if F'(z) is equal to 1 for a specified value of z. A standardized limiting distribution of X,
may be obtained by introducing the linear transformation, a, X, + b,, where a,, and b, are finite

constants depending on the sample size n.
In Appendix C, using the theory of limiting distributions [68], it is shown that if there exist

sequences a,, and b, such that

Xn — by

n

lim P(

1= OO

<) = lim F"(anz + bn) = Gn(anz + bn) = A(z) (10.9)

then the solution of the above functional equation yields all the possible limiting forms for the
distribution function G,(z). The solutions to the above equation are derived in Appendix C and

are rewritten here:

A(z) = exp(—e™®) 20 (10.10)
A(z) = exp(~z%) 220, k>0 (10.11)
Ax) = ezp(—(~z)*) <0, k> 0. (10.12)

In the limit, as n gets large, these are the three types of distribution functions to which the largest
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order statistic drawn from almost any smooth and continuous distribution function converge.
Therefore, for large z, the tails of almost all smooth and continuous probability density functions
for the largest order statistic also converge to three limiting forms. From equations (10.10) and
(10.11), respectively, the two limiting forms that pertain to the right tail (the case of interest for

the locally optimum detector test statistic) are [68]

1. —-)- ~H(z) = e° (10.13)

) H(z) = k™) k>0 (10.14)

where H(z) approximates the probability density function for large z. The first equation above
is the well known exponential distribution and the second equation is related to the Pareto
distribution. The details that lead to the limiting distributions of the tails are shown in Appendix
C.

It remains to be explained how the distribution of the largest order statistic is related to the
tails of the underlying PDF from which the samples are drawn. The relationship is based on
the observation that inferences from short sequences are likely to be unreliable. In particular,
instead of observing k sets of n samples and taking the largest order statistic from each of the
k sets, it is better to observe a single set of nk samples and use the largest k£ samples from this
set [69]. The k largest order statistics from a vector of nk observations constitute the tail of the
underlying distribution especially when n is very large. Therefore, the limiting distribution of

the largest order statistic closely approximates the tail of the underlying PDF for large n.

10.3 The Generalized Pareto Distribution
The Generalized Pareto Distribution (GPD) is defined for £ > 0 by the distribution function

G@)=1~(147z/e) ", —00 <y <00,0>0,7z> —0. (10.15)

This distribution has a simple closed form and includes a range of distributions depending upon
the choice of 4 and 0. For example, the exponential distribution results for ¥ = 0 and the
uniform distribution is obtained when v = —1. The GPD defined in equation (10.15) is valid
for all z > 0 while equations (10.13) and (10.14) are valid only for large z.
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The probability density function corresponding to the GPD is given by
o(e) = -l - (14 22) = 2014 )4, (10.16)
If we let ¥ — 0 in the above equation, note that
lim -1-(1 + Ly 2 1-s, (10.17)
v o a
Also, if we let z be large in equation (10.16), note that

] cioy lyCang i
%(1+3&f)%‘z;(g)$‘z#‘. (10.18)

Equations (10.17) and (10.18) are of the same form as equations (10.13) and (10.14). Thus,
the GPD can be used to approximate both types of tail behavior exhibited by the right tail.
Typical plots of the Generalized Pareto PDF are shown for v < 0 and v > 0 in figures 10.2 &
10.3.

We wish to set thresholds for specified false alarm probabilities when the underlying density
functions are unknown. To set very small false alarm probabilities, the tail of the PDF py(1|Hp)
has to be accurately modeled. Figure 10.4 represents a typical PDF of the test statistic with the
tail region of the PDF being defined as that to the right of ¢ = ;. Figure 10.5 shows the tail
translated to the origin. The choice for ¢, is somewhat arbitrary. For example, ¢o can be chosen
such that the area in the shaded region equals 0.1, 0.05 or 0.01. It is the portion of the PDF to
the right of #; that we are interested in modeling by the GPD. In particular, the tail region of
the PDF is translated to the origin and modeled as a GPD. Once the estimates of o and v have
been obtained, the GPD is scaled by the area of the shaded region and translated back to the
point o. In this way, the area under the PDF of the test statistic is maintained at unity.
10.3.1 Methods for Estimating the Parameters of the GPD

Suppose that the sample ordered statistics X; < X; < ... € X, are drawn from the distribution
function F(x). To estimate the right tail of this distribution it is necessary to determine a value
(say zo) and then use those sample observations which are greater than zo to obtain the quantity
z = 2 — 9. Once the tail observations have been chosen, the Generalized Pareto Distribution
can be fitted to these observations by using standard methods of parameter estimation. Observe

that the portion of the observations used from a complete set of samples depends on the choice
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Figure 10.5: Tail of the test statistic shifted to origin.
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of z5. One approach to selecting xo is to make a histogram of the data set and choose z to
be nesr the point of inflection of the histogram. DuMouchel [70] proposed choosing zn to be
the value such that [ fx(z)dz = 0.1. Such an approach is less subjective and appears to be
satisfuctory for many applications. However, it is noted by DuMouchel that “ using an even
smaller fraction of observations would restrict profitable use of the statistic to much larger sizes.
On the other hand, to use more than the upper one tenth of a sample would seem to allow too
much dependence on the central part of the distribution.”In other words, if a smaller fraction is
used, we need larger sample sizes to get an adequate number of samples for estimation and if a
larger fraction is used, the body of the distribution may influence estimation of the tail.

Let xo he chosen as the value such that 1 — F(zo) = [y fx(z)dz = a. The disiribution

function to be used in approximating the tail can be written as
F(z)=(1-a)+aG(z —z¢) =1 — afl -+ %(z —20)]"Y" &> xo (10.19)

where G(z) is given in equation (10.15). Assuming that the tail of a given distribution can be
approximated by equation (10.19), then the estimation problem of the distribution in the iail
region is reduced to estimation of the parameters of the Generalized Pareto distribution.

In this chapter we consider three methods for the parameter estimation of the Generalized
Pareto distribution. The three methods are maximum likelihood estimation, the method of
probability weighted moments, and the ordered sample least squares approach. The first two
methods, applied to the GPD, are discussed by Hosking and Wallis |[71]. The ordered sample
least squares approach is a new technique developed in this work. The performance of the three
estimation procedures are compared on the basis of estimation bias and mean square error.
10.3.1.1 Maximum Likelihood Estimation

The probability density function corresponding to the GPD from equation (10.16), with z

replaced by z, is
1
o

9(z) = =(1+ Z)75, (10.20)

Given a sample vector [zy, 23, ..., 2m| from the GPD the joint density function Lz(z) of the m

samples, assuming independence is given by

La(z) = = [10 + Zy4-, (1021)
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Tn theoretically obtain the maximum likelihood estimates of ¢ and v, the logarithm cf the joint
deusity function in equation (10.21) is differentiated with respect to o and =, respectively, and the
derivatives are set to zero. Let the largest m observations from the unknown distribution whose
tail is being modeled by GPD be placed in the vector [Zn—m+1, Tn-m+2,..-» Z4). Translation of the
tail region to the origin results in the vector [Zp-m+1 =20, Tn-m+2—T0, ..y, En—To] = [21, 22, 11, Zm]-
Letting 7 = /o in equation (10.21) and differentiating the logarithm of the joint density function

with respect to o we get

il

4 1m log (6) + (1 + (ro)™) 3 log(1 + 72)]

d _
=1

do

= %’- +(1- ;i—r)f:loy(l +7zi/0). (10.22)

i=1

By setting equation (10.22) to zero, an expression for o that satisfies the equation is

o(r) = 3 log(1 + r23)/(mr). (10.23)

The expression for o is now substituted into equation (10.22), so as to obtain a function of 7

alone. 7 is derived by differentiating the quantity

m log o(7)+ (1 + 1/(0(7)1‘))f: log(1 + 72;) (10.24)

i=1

with respect to 7 and setting the derivative equzi to zero with the constraint that 7z; > ~1.
However, the differentiation leads to a nonlinear equation whose analytical solution is not known.
This difficulty is circumvented by minimizing equation (10.24) numerically with respect to 7.
The numerical minimization was performed using the Nelder-Mead algorithm [72]. Once the
estimate for 7 has been obtained, then ¢ is obtained from equation (10.23) and v is estimated
by ¥ =a7.

10.3.1.2 Probability Weighted Moments

The probability weighted moments of a continuous random variable Z with distribution func-

tion G are the quantities

M,..= E[Z°G"(Z)(1 - G(2))"] (10.25)




where E is the expectation operator and p, r and s are real numbers. For the GPD it is convenient

to choose p = 1 and r = 0, respectively. Then the probability weighted moments are

Mo, = E[Z(1 - G(2))"]

(10.26)

For the GPD there are two parameters to be estimated, o and 4. Substituting s = 0, in equation

(10.26), we get

*Z Z. _1_
€0 = My oo = E[Z] = /0 ;(1 + la_) -ym

Letting 1 + 22 = Y, equation (10.27) results in

€o

o had ~11
:7-5/1 (Y - 1)y-¥-14y

a[Y'%" Y'#]“,

T
g

1—7v

Letting s = 1 in equation (10.26) we obtain

(> -] Z Z _ Z i
‘1=Mlv°»1=E[Z(1—G(Z)]=/o 7;(1+'y )+ L2y ez,

o

Letting 1 + 2Z = Y, as before, equation (10.29) results in

€1

g oo __l_l
:1-5/1 Y -1)Y-i-'ay

o [Y-%“ Y-%]w
7T T
g
2(2-19)

(10.27)

(10.28)

(10.29)

(10.30)

The values of ¢ and ¢, are obtained from equations (10.28) and (10.30), respectively, for given

values of o and 4. Since there are two equations in two unknowns ¢ and 4 can be obtained as

functions of ¢ and €;. Solving for o and v we obtain

G
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= 26061/(60 - 261)

(10.31)




and
‘3’ =2~ €o/(€o - 261) (10.32)

where ¢y and ¢; are estimated from the data by the estimators é = Y0, z;//m and & =
Lizi(m = €)z;/{m(m — 1)} [71]. Once the values of & and ¢, are obtained the estimates of o
and v are obtained by making use of equations (10.31) and ( 10.32). Note that the method of
probability weighted moments involves computationally simple expression for the estimates.
10.3.1.3 The Ordered Sample Least Squares Method - A new approach

The procedure used in maximum likelihood estimation is based on minimizing the quantity
in equation (10.24). Similarly, the probability weighted moment estimates are obtained by
equating with the sample based values the theoretical values of the quantity E[Z(1 - G(2))'],
§=0,1, where Z = X — zo. The ordered sample least squares method is based on the principle
of minimizing the squared distance between the ordered sample and the expected value of the
ordered sample. Computer simulations reveal that this can be a more sujtable approach for
estimating the parameters.

In Appendix C the method for evaluating the mean and the variance of the r** ordered statistic
from a sample size n is presented. For the Generalized Pareto Distribution the mean and the
variance of the r** order statistic can be derived since the probability distribution function is
known in closed form. Let  be replaced by z in equation (10.15) and let G(2) = u. Solution

for z results in

z=G"u) = %[(1 — )™~ 1]. (10.33)
Making use of the above equation and equation (C.62) in Appendix A, the expected value of Z,
is

E(Z,) =

T u('n [/ (=)™ = Du'=}(1 — w)"~"du]. (10.34)

The integral in the above equation can be broken into two parts as follows.

E(Z,) = z ![/01(1 —u)" "1 - u)" " du — /01 w1 —u)""du).  (10.35)

7 ( )’(n
From results presented in Gradshtyn and Ryzhik [45], the expression for E( Z,) becomes

o n! [(r—- Di(n—r—4)! _ (r-l)!(n—-r)!]
Y(r—1)(n—-r) (n—) n!

E(Z,)
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_o_r[ nlin—r —9)! ~1)
7' (n=r)l(n-)!

g_[I‘(n-i- Nl(n~r—g+1)
¥y I(n—r+1)'(n—vy+1)

- 1}. (10.36)

To calculate the variance of Z,, we first calculate E(Z2). Making use of equation (10.33) and
equation (C.65) in Appendix C, the expected value of Z2 is

E(2}) =

‘7:(1' 1)'(n r)![/ (1= w)™" =11 ~ )" du). (10.37)

The integral in the above equation can be rewritten as follows:

Ez) —‘72(1' )'(n )v[/ (1= )™ = 2(1 —u)™ +1)u""}(1 —u)*"du].  (10.38)

Making use of results from [73], the above integral evaluates to

o? ! n—r~29)! 2(n—r—4q)!
BE) = Shlt e e+
_ 0 T(n+1) Tn—r—2y+1) 2M(n-r—v+1)
B 7’I‘(n—r+1)[ I(n—2v+1) '(n—v+1) +1. - (10.99)

From equations (10.36) and (10.39) and using the result Var(Z,) = E(X?) — E*(X,), we have

o T(n+1) [F(n-r--27+1)
Y?T(n—r+1)" I'(n—-2v+1)
2I‘(n-r—'y)+1 ocl'n+1)(n-r—-v+1)

Var(Z,) =

- -1} (10.
e )t G - W (1040
Simplifying the above equation results in
_ o Tn+1) Tn—r—2y+1) IPn+l) Mn—r—q+41)
Var(Z) = 2[I‘(n r+1) T(n=2y+1) T?n-r+1) rn-v+1) - (1041)
Letting Q.(7) = rf}:ta) rl(,’;;:;z’;)” , results in
B(Z.) = e = Z{Q(1) ~ 1) (10.42)
2
Var(Z,) = of = {Q:(27) - (@ (1)} (10.43)
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A computationally sirnpler expression can be found for Q,(y) by making use of the properties of
ga ‘unctions. Dividing Q.(y) by Qr-1(7) we get

M(n41) [(n—=r—v41
Q"(‘Y) — Fﬂ:"+1 "ﬂ:'ﬂ"ll n-—-r+ 1 (10.44)

@ra(7) it Ieeradd Cn-r— g+ 1

Equation (10.44) reduces to

() =Ma(n =i+ 1)/(n—i+1-7) (10.45)

To find the least squares estimates of the parameters we write the following non-linear model

for the r** sample order statistic
Z.=E(Z,)+e, r=12,..,m (10.46)

where the error term e, has a distribution with mean 0 and variance o2. Since the order statistics
are not independent, the errors are also not independent. Because of the non-linear structure of
the model in equation (10.46) and correlated errors, least squares estimation does not offer a
straightforward solution to the estimation problem. Even so, in this study we proceed to use the
ordered sample least squares (OSLS) procedure to estimate the parameters.
In equation (10.42), we note that the scale parameter o appears linearly whereas the shape
parameter 4 does not. The least squares estimates are obtained by minimizing the quantity
m m
S = g e = ;(Zr —o(Q-(7) = 1)/ (10.47)
Since o appears linearly in the above expression, minimization can be achieved analytically.
Differentiating equation (10.47) with respect to o and setting the derivative equal to zero results
in
e o 1
23.(2 = (@) = (= (@:(x) = 1) =0 (10.48)

The solution for o from the above equation is

i) = 4 D Z6(Qr() = 1)
=T R 1 1049

The expression for & is substituted in equation (10.47) and the resulting expression is minimized
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with respect to 4. The resulting expression after the substitution is nonlinear and minimization
cannot be performed analytically. Using the Nelder-Mead algorithm [72], the minimization is
done numerically. Once the estimate of 4 is obtained, & is obtained from equation (10.49).

Recall that the GPD is being used to approximate the tail of the underlying distribution.
Hence, the ordered staiistics Z,, r = 1,2, ...,m, from the GPD actually correspond to the ordered
statistics Xn—m41 — Zo, Xn-m+2 — To...Xn — 2o from the underlying distribution.

The least squares procedure results in a computationally convenient algorithm. It is empha-
sized that the minimization of S is carried out only with respect to the single parameter +.
Furthermore, the underlying criterion is based on minimizing the distance between the empirical
values and the expected values of the ordered samples. Some numerical comparisons are given

in section 10.4.
10.3.2 Estimation of Thresholds

The Generalized Pareto Distribution that is estimated from the data is used to approximate
the tail of the unknown, underlying distribution. We now show that the threshold is related to
the approximating distribution function in a direct manner. With reference to equation (10.19),
let 7, denote the threshold estimate of the threshold corresponding to a false alarm probability

p. We then have

~

F(iy) =1-p=1-afl + (i — z0)] /" (10.50)

Solution for #j, results in
o =20+ 0(q7" — 1)/ (10.51)

where o = 1 — F(z0), ¢ = (1 — p)/a and o = F~!(1 — a). For many applications DuMouchel
[70] suggests that a == 0.1 be used. As will be discussed in the subsequent sections, the optimal
value of & depends on the threshold being estimated. Since the distribution function F(z) is not
known, zo cannot be determined for a given value of a. Therefore, following common practice,
the sample order statistic X,_m, where m = [an] and [ . ] denotes the integer part operator, is

used as an estimate of z,.
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10.4 Numerical Results
10.4.1 Characterization of Tail Shape for Known Distributions

We first discuss a method for estimating the parameters of the GPD when the underlying distri-
bution is known. Choose z¢ such that 1—F(zo) = 0.1. Then define the points p; i=1,2,...1000 by

pi = 0.90005 + 0.0001(; — 1). (10.52)

Analytically evaluate z; = F~)(p;) from the known distribution. Using the 1000 values of
;, the maximum likelihood estimation, the ordered sample least squares and the probability
weighted moments procedures were applied to determine the corresponding v values for various
distributions. The results are given in Table 10.1. The number in parentheses for the Weibull
and Lognormal distributions is the value of the shape parameter. For the remaining distributions
the number denotes the degrees of freedom. Since o is a scale parameter, the shape parameter
~ best describes the tail shape. For the exponential and the uniform distributions the value of v
can be nbtained theoretically. ¥ = 0 for the exponential distribution and is —1 for the uniform
distribution. Since the size of the tail decreases with decreasing «, the relationship between the
tail behavior and the corresponding values of the shape parameter v can be clearly inferred from

this table.




Distribution | OSLS | ML | PWM

Gaussian -0.144 | -0.151 [ -0.174 |

Weibull(3) | -0.163 | -0.168 | -0.194
Weibull(.67) | 0.108 | 0.129 | 0.137

Weibull(.8) | 0.201 | 0.2656 | 0.263
Student-t(3) | 0.290 | 0.260 | 0.261
Student-t(5) | 0.132 | 0.099 | 0.090
Student-t(8) | 0.031 | 0.006 { -0.010
Lognormal(1) | 0.232 | 0.259 | 0.258
Chi-square(1) | 0.030 | 0.034 | 0.044
Chi-square(4) | -0.024 | -0.033 | -0.034

Chi-square(8) | -0.047 | -0.058 | -0.064

Table 10.1: Tail parameter v describing the upper ten percent of various distributions.

10.4.2 Empirical Properties of the Estimators for Known Distributions

Seven distributions with widely differing tail behaviors were chosen in order to investigate the
adequacy of the approximation of extreme tails by the GPD and to compare the three estimation
procedures. The gamma distribution and Weibull distribution with shape parameter of value 3
have tails lighter than those of the exponential PDF. The tails of the chi-square distribution with
4 degrees of freedom and the student-T distribution with 8 degrees of freedom are approximately
the same as those of the exponential PDF. Finally, the student-T distribution with 4 degrees of
freedom and the Lognormal distribution with shape parameter of value 1 have tails heavier than
those of the exponential PDF.

Let  and 7 denote the true and estimated thresholds, respectively. A Monte Carlo experiment
was performed to investigate the normalized bias, ﬂ-',;'ﬂ and the normalized mean square error
(ﬁ?)? of the proposed threshold estimates. The four sample sizes given by m = 25, 50, 100 and
1000 were considered. Each set of samples was obtained by generating n observations and taking
the largest m = 0.1n observations. For example, a set of samples of size 25 was obtained by
selecting the largest 25 observations from a collection of size 250 samples. For all four different
values of m, k=200,000/m trials were performed for each of the seven distributions. The median
of the normalized bias values were computed for each distribution and estimation procedure. The
results for Pr = 10~%, k=2,3,...7 are given in Table 10.2. Similarly the median of the positive
square root of the normalized mean square error are presented in Table 10.3. The results in the
two tables differ because the sign of (1 — n)/n is lost in the normalized root mean square values

computed in Table 10.3. Extremely poor estimates for 7 were obtained in some of the trials.
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m=25

Pr 10-2 103 10-%* 10-° 10-% 107 ]
Normal OSLS [ -0.0112 0.0043 -0.0040 -0.0276 -0.0671 -0.087 2
Normal ML |{-0.0034 0.0187 0.0328 0.0358 0.0281 0.0137
Normal PWM | -0.0084 -0.0208 -0.0560 -0.1015 -0.1464 -0.1924
Weibull(3) | OSLS | -0.0048 0.0013 -0.0041 -0.0202 -0.0418 -0.0619
Weibull(3) | ML | 0.0030 0.0481 0.0938 0.1374 0.1776  0.2137
Weibull(3) | PWM | -0.0037 -0.0106 -0.0333 -0.0635 -0.0919 -0.1216

() OSLS [ -0.0424 -0.0792 -0.1658 -0.2727 -0.3872 -0.4922

t(4) ML |-0.0166 -0.1115 -0.2526 -0.4045 -0.5416 -0.6541

t(4) PWM | -0.0218 -0.0929 -0.2160 -0.3498 -0.4761 -0.5881

t(8) OSLS | -0.0221 -0.0186 -0.0572 -0.1164 -0.1975 -0.2879 |

t(8) ML | -0.0104 -0.0468 -0.1169 -0.2077 -0.3055 -0.4033

t(8) PWM | -0.0129 -0.0452 -0.1095 -0.2039 -0.3063 -0.4115
Chi-sq(4) | OSLS [ -0.0209 -0.0039 0.0241 0.0333 -0.0088 -0.0104
Chi-sq(4) ML |-0.0037 0.0943 0.2518 0.4571 0.6185 0.8810
Chi-sq(4) | PWM | -0.0144 -0.0205 -0.0334 -0.0576 -0.1254 -0.1624
Lognormal | OSLS | -0.0835 -0.0982 -0.0634 0.0016 0.1007  0.2567
Lognormal | ML | -0.0058 0.1836 0.5932 1.2736 2.4832  4.4947
Lognormal | PWM | -0.0543 -0.0878 -0.0931 -0.0728 -0.0228 0.0639
Pareto(-0.25) | OSLS | -0.0092 0.0208 0.0423  0.0631 0.0780 _ 0.0874
Pareto(-0.25) | ML [ -0.0030 0.0523 0.1190 0.1868 0.2479  0.2969
Pareto(-0.25) | PWM | -0.0077 0.0052 0.0121 0.0199 0.0237  0.0278
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Table 10.2; Median of the normalized bias values for different percentiles. OSLS:Ordered
Sample Least Square, ML:Maximum Likelihood, PWM:Probability Weighted Moments




m=>50

Pr 107 10~3 10-4 10~ 16-° 10~7
Normal OSLS | 0.0036 0.0073 -0.0068 -0.0354 -0.0676 -0.1022
Normal ML | 0.0042 0.0323 0.0497 0.0578 0.0528 0.0380
Normal PWM | -0.0012 -0.0118 -0.0459 -0.0861 -0.1318 -0.1742
Weibull(3) | OSLS [ -0.0022 -0.0007 -0.0133 -0.0337 -0.0571 -0.0838
Weibull(3) ML | 0.0056 0.0500 0.0991 0.1436 0.1847 0.2199
Weibull(3) | PWM {-0.0014 -0.0105 -0.0342 -0.0629 -0.0937 -0.1256

t(4) OSLS | -0.0147 -0.0646 -0.1800 -0.3209 -0.4501 -0.5063

t(4) ML |-0.0068 -0.0867 -0.2264 -0.3736 -0.5120 -0.6291

t(4) PWM | -0.0078 -0.0622 -0.1662 -0.2973 -0.4233 -0.5391

t(8) OSLS |-0.0062 -0.0222 -0.0841 -0.1723 -0.2694 -0.3703

t(8) ML {-0.0031 -0.0502 -0.1352 -0.2385 -0.3460 -0.4517

t(8) PWM | -0.0032 -0.0336 -0.1064 -0.2041 -0.3051 -0.4046
Chi-sq(4) | OSLS | -0.0092 -0.0004 0.0051 0.0060 -0.0498 -0.0686
Chi-sq(4) ML | 0.0115 0.1134 0.2755 0.4775 0.6368 0.9150
Chi-sq(4) | PWM | -0.0041 -0.0087 -0.0191 -0.0407 -0.1123 -0.1488
Lognormal | OSLS | -0.0544 -0.0594 -0.0272 0.0458 0.1573 0.3274
Lognormal ML | 0.0092 0.2177 06336 1.3811 2.6197 4.7101
Lognormal | PWM | -0.0302 -0.0391 -0.0185 0.0413 0.1480 0.2077
Pareto(-0.25) | OSLS | -0.0052 0.0100 0.0214 0.0326 0.0404 0.0448
Pareto(-0.25) | ML | 0.0005 00463 0.1011 0.1560 0.2003 0.2357
Pareto(-0.25) | PWM | -0.0050 -0.0018 -0.0012 -0.0019 -0.0023 -0.0912 |

Table 10.2: Median of the normalized bias values for different percentiies. (contd.)
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m=100

Pr 10~7 1077 107 10-%  10-% 10-'
Normal OSLS | 0.0017 -0.0016 -0.0263 -0.0637 -0.1040 -0.1464 |
Normal ML | 0.0068 0.0263 0.0306 0.0229 0.0063 -0.0185
Normal PWM | 0.0018 -0.0181 -0.0549 -0.1022 -0.1524 -0.1986
Weibull(3) | OSLS | 0.0006 -0.0017 -0.0164 -0.0376 -0.0624 -0.0888
Weibull(3) ML | 0.0037 0.0270 0.0564 0.0840 0.1003 0.1158
Weibull(3) | PWM | 0.0004 -0.0095 -0.0320 -0.0607 -0.0918 -0.1220

t(4) OSLS | -0.0064 -0.0441 -0.1421 -0.2680 -0.3922 -0.5931
t(4) ML | -0.0004 -0.0564 -0.1650 -0.2007 -0.4174 -0.5354
t(4) PWM | -0.0003 -0.0478 -0.1403 -0.2636 -0.3809 -0 4949
t(8) OSLS | -0.0024 -0.0134 -0.0751 -0.1606 -0.2578 -0.3548
t(8) ML | 0.0011 -0.0342 -0.1145 -0.2123 -0.3157 -0.4216
t(8) PWM | 0.0013 -0.0271 -0.0955 -0.1888 -0.2892 -0.3916

Chi-sq(4) OSLS | -0.0032 -0.0028 -0.0077 -0.0198 -0.0841 -0.1111
Chi-sq(4) ML | 0.0176 0.1189 0.2666 (0.4581 0.5917 0.8298
Chi-sq(4) PWM | -0.0004 -0.0089 -0.0238 -0.0448 -0.1143 -0.1520
Lognormal | OSLS | -0.0169 -0.0542 -0.0876 -0.1089 -0.09040 -0.0617
Lognormal ML |-0.0111 -0.0251 -0.0068 0.0536 0.1499 0.3104
Lognormal | PWM | -0.0165 -0.0210 0.0141 0.0924  0.2316 0.39§L
Pareto(-0.25) | OSLS | -0.0023 0.0109 0.0255 0.0350 0.0419 0.0471
Pareto(-0.25) | ML | 0.0033 0.0544 0.1170 0.1739 0.22156 0.2611
Pareto(-0.25) | PWM | -0.0014  0.0004  0.0052 0.0084 0.0112 0.012&

Table 10.2: Median of the normalized bias values for different percentiles. (contd.)




m=1000

Pr 107 __10-° __10* ___10—° _10-° 10"
Normal | OSLS | 0.0035 -0.0013 -0.0244 -0.0613 -0.1010 -0.1432
Normal | ML | 0.0059 00017 -0.0259 -0.0626 -0.1075 -0.1476
Normal | PWM | 0.0028 -0.0192 -0.0586 -0.1064 -0.1560 -0.2016
Weibull(3) | OSLS | 0.0013 -0.0023 -0.0175 -0.0381 -0.0627 -0.0885
Weibull(3) | ML | 0.0020 -0.0018 -0.0159 -0.0386 -0.0641 -0.0909
Weibull(3) | PWM | 0.0010 -0.0092 -0.0207 -0.0578 -0.0880 -0.1192 |

t(4) OSLS | 0.0068 -0.0044 -0.0606 -0.1574 -0.2600 -0.3715

4(4) ML | 00141 -0.0137 -0.1018 -0.2167 -0.3326 -0.4406

4(4) PWM | 00141 -0.0176 -0.1104 -0.2277 -0.3479 -0.4598

t(3) OSLS | 0.0033 -0.0021 -0.0452 -0.1167 -0.2001 -0.2896

t(8) ML | 0.0070 -0.0117 -0.0864 -0.1464 -0.2404 -0.3382
_4(8) PWM | 0.0045 -0.0219 -0.0896 -0.1825 -0.2857 -0.3862
Chi-sq(4) | OSLS | 0.0003 0.0012 -0.0057 -0.0167 -0.0826 -0.1107
Chi-sq(4) | ML | 00012 -0.0021 -0.0152 -0.0354 -0.1026 -0.1349
Chi-sq(4) | PWM | 0.0006 -0.0011 -0.0080 -0.0263 -0.0934 -0.1211
Lognormal | OSLS | -0.0038 -0.0221 -0.0260 0.0065 0.0645  0.1638
Lognormal | ML |-0.0008 0.0063 0.0616 0.1767 0.3495 0.5999
Lognormal | PWM | -0.0128 -0.0004 0.0567 _ 0.1683  0.3400 _ 0.5771
Pareto(-0.25) | OSLS | 0.0002 0.0002 0.0012 00007 _ 0.0003  0.0000
Pareto(-0.25) | ML | -0.0002 -0.0010 -0.0044 -0.0061 -0.0081 -0.0094
Pareto(-0.25) | PWM [ 0.0003 -0.0011 -0.0007 -0.0006 -0.0035 -0.0038

Table 10.2:

Median of the normalized bias values for different percentiles.
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m=25
Py 10=¢ 10°° 10— 10-° 10-° 10-°
Normal OSLS [ 0.0658 0.1127 0.2022 0.2825 0.3507 0.4044
Normal ML | 0.0558 0.0909 0.1459 0.2057 0.2588 0.3070
Normal PWM | 0.0569 0.1215 0.2121 0.2920 0.3586 04117
Weibull(3) | OSLS | 0.0257 0.0677 0.1088 0.1680 0.2031 0.2415
Weibull(3) ML | 0.0258 0.0531 0.0950 0.1378 0.1780 0.2139
Weibull(3) | PWM | 0.0266 0.0624 0.1149 0.1659 0.2110 0.2495

t(4) OSLS [0.1069 0.2261 0.4160 05989 0.7397 0.8405
t(4) ML | 0.1051 0.2353 0.4157 05812 0.7127 0.8097
4(4) PWM | 0.1019 02329 0.4213 0.5956 0.7368 0.8344 |
4(8) OSLS [0.0781 0.1666 0.3073 0.4455 0.5701 0.6730
4(8) ML |0.0779 0.493 0.2654¢ 0.3648 0.4689 0.5649
«(8) PWM | 0.0775 01752 0.3180 04544 0.5783 0.6787

[ Chi-sq(4) | OSLS | 0.0610 0.1313 0.2441 0.3592 0.4650 0.5455
Chi-sq(4) ML | 0.0721 0.217¢ 0.4459 0.7901 1.1783 1.7789
Chi-sq(4) | PWM | 0.0592 0.1384 0.2500 0.3622 0.4666 0.5446
Lognormal | OSLS | 0.1335 0.2452 0.4362 0.6271 0.7785 0.8785
Lognormal | ML | 0.1439 0.4007 0.7303 1.4149 2.7312 5.0774
Lognormal | PWM | 0.1260 02582 0.4463 0.6281 0.7737 0.8705
Pareto(-0.25) | OSLS | 0.0409 0.0787 0.1348 0.1762 0.2017 0.219
Pareto(-0.25) | ML [ 0.0402 0.0763 0.1419 0.20756 0.2640 0.3127
Pareto(-0.25) | PWM | 0.0411 0.0866 0.1430 0.1817 0.2084 0.2240

Table 10.3: Median RMS errors for various percentiles. OSLS:Ordered Sample Least
Square, ML:Maximum Likelihood, PWM:Probability Weighted Momenis
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m=50

Pr 107 710°Y 107 10°% 10°% 10~
Normal | OSLS [ 0.0401 0.0772 0.1391 0.1981 025648 0.3042
Normal ML |0.0394 0.0689 0.1122 0.1659 0.1959 0.2328
Normal | PWM | 0.0399 0.0865 0.1530 0.2192 0.2759 0.3273
Weibull(3) | OSLS | 0.0180 0.0393 0.0743 0.1136 0.1611 0.1854
Weibull(3) | ML |0.0185 0.0509 0.0997 0.1447 0.1859 0.2214
Weibull(3) | PWM | 0.0180 0.0442 0.0852 0.1263 0.1661 0.2017

(4) OGLS [0.0779 0.1826 0.3506 0.5179 0.6633 0.7724

t(4) ML |0.0768 0.1910 0.3602 0.5244 0.6688 0.7762

t(4) PWM | 0.0760 0.1778 0.3332 0.4899 0.6303 0.7386

(%) OSLS [0.0661 0.1228 0.2316 0.3603 0.4666 0.5698

t(8) ML | 0.0653 0.1219 0.2226 0.3385 0.4504 0.5529

t(8) PWM | 0.0554 0.1306 0.2405 0.3613 0.4793 0.5807
Chi-sq(4) | OSLS | 0.0431 0.0890 0.1678 0.2509 0.3351 0.4109
Chi-sq(4) ML |0.0489 0.1661 0.3386 0.5487 0.7664 1.1112
Chi-sq(4) | PWM | 0.0426 0.0939 0.1747 0.2584 0.3431 0.4185
Lognormal | OSLS | 0.08756 0.i834 (.3439 0.5165 0.6660 0.7990
Lognormal | ML [ 0.0993 0.3381 0.6769 1.3921 2.6297 4.7240
Lognormal | PWM | 0.0864 0.1954 0.3510 0.5143 0.6621 0.801%
Pareto(-0.25) | OSLS | 0.0289 0.0534 0.0890 0.1162 0.1346 0.1486
Pareto(-0.25) | ML | 0.0284 0.0602 0.1149 0.1675 0.2084 0.2417
Pareto(-0.25) | PWM | 0.0293 0.0616 0.1032 0.1320 0.1533 0.1666

Table 10.3: Median RMS errors for various percentiles. (contd.)
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m=100
Py 10-4 1079 10-* 10°° 10-° 10~7
Normal OSLS | 0.0284 0.05622 0.0964 0.1414 0.1863 0.2305
Normal ML | 0.0290 0.0517 0.0840 0.1123 0.1433 0.1689
Normal PWM | 0.0281 0.05§4 0.1690 0.16356 0.2134 0.2585
Weibull(3) OSLS | 0.0128 0.0273 0.0529 0.0811 ¢€.1101 0.1378
Weibull(3) ML |0.0131 0.0389 0.0790 0.1202 0.15670 0.1868
Weibull(3) | PWM | 0.0126 0.0312 0.0622 0.0942 0.1284 0.1590

) OSLS | 0.0650 0.1400 0.2801 0.4336 0.5739 0.6909
t(4) ML |0.0525 0.1377 0.2716 0.4166 0.5497 0.6627
t(4) PWM | 0.0527 0.1334 0.2619 0.4046 0.5323 0.6469
70) OSLS | 0.6385  0.0914 0.1770 0.2761 0.3758 0.4732
t(8) ML |0.0388 0.0896 0.1735 0.2710 0.3734 0.4763
t(8) PWM | 0.0384 0.0869 0.1727 0.2750 0.3777 0.4817

[ Chi-sq(4) | OSLS | 0.0287 0.0649 0.1264 0.1932 0.2699 (.3373 |
Chi-sq(4) ML |0.0350 0.1437 0.2959 0.4688 0.6092 0.8592
Chi-sq(4) | PWM | 0.0283 0.0686 0.1289 0.1948 0.2730 0.3383
Lognormal | OSLS | 0.0683 0.1527 0.27904 0.4174 0.5299 0.6290
Lognorma! | ML | 0.0652 0.1515 0.2690 0.4039 0.5465 0.6769
Lognormal | PWM | 0.0647 0.1417 0.2519 0.3805 0.5218 0.6710
Pareto(-0.25) [ OSLS | 0.0201 0.0372 0.0637 0.0845 0.0997 0.1110
Pareto(-0.25) | ML |0.0197 0.0568 0.1192 0.1746 0.2221 0.2613
Pareto(-0.25) | PWM | 0.0201 0.0434 0.0718 0.0952 0.1108 0.1220

e——— ——————————

e v

Table 10.3: Median RMS errors for various percentiles. (contd.)




m=1000

Pr 10-7 10-° 107 10~ 10-° 10~"
Normal | OSLS | 0.0077 0.0182 0.0373 0.0643 0.1017 0.1440
Norinal ML |0.0087 0.0160 0.0362 0.0632 0.1075 0.1476
Normal | PWM | 0.0081 0.0247 0.0586 0.1064 0.1560 0.2016
Weibull(3) | OSLS | 0.0037 0.0086 0.0194 0.0393 0.0630 0.0890
Weibull(3) | ML |[0.0040 0.0078 0.0191 0.0397 0.0649 0.0909
Weibull(3) | PWM | 0.0036 0.0108 0.0300 0.0578 0.0880 0.1192

t(d) OSLS | 0.0203 0.0634 0.1383 0.2476 0.3717 0.4763 |

t(4) ML |0.0213 0.0447 0.1083 0.2168 0.3326 0.4406

t(4) PWM | 00213 0.0499 0.1207 0.2306  0.3479 0.4598

t(8) OSLS | 0.0135 0.0298 0.0726 0.1379 0.2121 0.3018

+(8) ML |0.0120 0.0272 0.0750 0.1518 0.2436  0.3406

t(8) PWM | 0.0120 0.0349 0.0939 0.1830 0.2863 0.3863
Chi-sq(d) | OSLS | 0.0104 0.0207 0.0362 0.0588 0.1004 0.1408
Chi-sq(4) | ML |[0.0099 00192 0.0363 0.0589 0.1095 0.1429
Chi-sq(4) | PWM | 0.0100 0.0211 0.0400 90.0602 0.1103 0.1433
Lognormal | OSLS | 0.0206 0.0628 0.1222 0.1836 0.2420 0.3276
Lognormal | ML | 0.0195 0.0434 0.0984 0.2012 0.3581 0.5999
Lognormal | PWM | 0.0201 0.0410 0.0927 0.1919 0.3445  0.5770
Pareto(-0.25) | OSLS | 0.0061 0.0101 0.0168 0.0213 0.0247 0.0278
Pareto(-0.25) | ML | 0.0063 0.0092 0.0154 0.0198 0.0243 0.0268
Pareto(-0.25) | PWM [ 0.0065 0.0126 0.0222 0.0306 0.0375 0.0428

Table 10.3: Median RMS errors for various percentiles.




These poor estimates could severely influence an arithmetic mean of the estimates. To avoid this
problem, median values were used in place of the arithmetic means.

The empirical results in Table 10.2 indicate that the newly proposed ordered sample least
squares estimator generally has a smaller normalized bias than the other estimators for small or
moderate sample sizes. Overall the second smallest normalized bias is achieved by the probability
weighted moments method. The maximum likelihood estimator has the largest normalized bias
when Pr > 1075, especially for the long tailed distributions. The normalized bias of all three
estimators decrease as the sample size increases. When the parent distribution is GPD,all three
estimators perform very well. Even so, the ordered sample least square estimator outperforms
the others. The relatively strong performance for the GPD is explained as follows. The extreme
value theory is based on the premise that tails of smooth continuous distributions tend towards
the GPD. For the GPD, this premise is exactly satisfied. Hence, the corresponding performance
is noticeably better than for other distributions.

The results for the median of the normalized root mean square error are surprising. The
maximum likelihood estimator is known to be asymptotically efficient. This is always true when
the samples are drawn from the underlying distribution (in our case from the generalized Pareto
distribution). This property of the maximum likelihood estimator can be observed in Table 10.3
when m =1000 but not for smaller sample sizes. Although the ordered sample least squares
method has a smaller normalized root mean square error in many cases, there is no clear winner
with respect to this criterion.

From the empirical results which are based on a limited number of distributions and sample
sizes, it is not easy to make a strong recommendation as to which method to use in practice.
However, in terms of the normalized bias, the ordered samples least squares estimator appears
to perform better over the other estimators in estimating the large thresholds when Pr < 107€,
In any event, it is seen that the extreme value theory can be used successfully to determine
threshold values, when the false alarm probability is very small.

Two practical advantages of estimation based on extreme value theory are: 1) When there is
a constraint on the number of samples, the thresholds obtained from extreme value theory are
theoretically expected to be closer to the true thresholds than those obtained by conventional
Monte Carlo techniques. However, in both techniques an increase in sample size offers greater

accuracy in estimating thresholds. 2) Because the estimate of the tail of the underlying distribu-
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tion is in closed form, estimation can be made for thresholds corresponding to extremely small
false alarm probabilities independent of the sample size. In experiments with fixed amounts of

data, this is an important advantage.
10.4.3 Effect of the Choice of a on the Threshold Estimates

As was mentioned previously, only samples whose value exceed z, are used in estimating the
GPD parameters. The value of z¢ is determined by a. The results presented in Tables 10.2-10.3
were obtained by means of Monte Carlo experiments where a = 0.1 was used independent of the
value of Pr for which the threshold was being estimated. When the false alarm probability was
extremely small, the bias and root mean square errors were quite large for some distributions.
This is due to the fact that the GPD is intended to model the extreme tail of the underlying
distribution. The smaller the value of a, the better will be the GPD approximation over the
extreme tail being approximated. When o is chosen too large, a better fit is found for that
portion of the distribution closer to the center at the expense of lesser accuracy in the extreme
tail. Of course, there is a tradeoff between the choice of o and the number of data samples
available for determining the parameters of the GPD.

In our application the major objective is to approximate the extreme tails corresponding to
thresholds of 10~® or smaller. Consequently, we explored the implications of selecting values
less than 0.1 for a. To accomplish this, we obtained the theoretical values of z; for the stan-
dard Normal and Lognormal distributions corresponding to F~!(p; where p; = -'"—f."i‘- ¢ 1=1,2,...n,
and n = 1,000 and 10,000 respectively. These two distributions are chosen because they rep-
resent extremes: The Normal distribution is light tailed while the Lognormal is a heavy tailed
distribution.

The number of the z; samples used to determine the parameters of the GPD is given by
an. The parameters were estimated using the OSLS procedure for values of a equal to 0.1,
0.05 and 0.01. The resulting GPDs were then used to determine the thresholds for false alarm
probabilities given by Pr = 10~* where k=2,3,...7. These results are presented in figure 10.6,
where both the theoretical and approximated thresholds are plotted as a function of k for (A)
Normal distribution (n=10,000), (B) Normal distribution (n=10600), (C) Lognormal distribution
(n=10,000), (D) Lognormal distribution (n=1000). For k > 5, it is seen that o = 0.01 (curve b)
appears to be the best choice for approximating the thresholds. The best results were obtained

with n = 10,000. However, good results were obtained with n = 1, 000.
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Figure 10.6: Normal distribution, n=10,000 Thresholds for Pp =
correspond to k = 2,3, ..., 7. a:True, b:x=0.01, c:a=0.05, d:x=0.10.
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Figure 10.6: Normal distribution, n=1000 Thresholds for Pr = 10~*. Data points corre-
spond to k= 2,3,..., 7. a:True, b:a=0.01, c:a=0.05, d:a=0.10.
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Figure 10.6: Lognormal distribution, n=10,000 Thresholds for Pr = 10~*. Data points
correspond to k = 2,3, ..., 7. a:True, b:a=0.01, c:a=0.05, d:a=0.10.
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Figure 10.6: Lognormal distribution, n=1000 Thresholds for Pr = 10~*. Data points
correspond to k = 2,3,...,7. a:True, b:a=0.01, c:a=0.05, d:a=0.10.
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10.5 Examples
10.5.1 Known Distribution Case

To evaluate the accuracy of the threshold value estimates, 10000 random samples were gener-
ated from the Gaussian and Lognormal distributions and the upper tails of these two distributions
were modeled as Generalized Pareto. In sections 10.4.1 and 10.4.3, theoretical values given by
z; = F~(p;) were used to estimate the tail. In this section randomly generated samples are
used in place of the theoretical values. Choosing a = 0.01, the theoretical thresholds of the
Gaussian distribution for Pr = 10~% k = 2,3...7 are 2.326, 3.090, 3.719, 4.265, 4.753 and 5.199,
respectively. The thresholds estimated are 2.315, 3.223, 3.847, 4.370, 4.855 and 5.292 . For the
Lognormal distribution the theoretical thresholds corresponding to Pr = 10~ k == 2,3...7 are
10.240, 21.982, 41.224, 71.157, 115.981 and 181.152. Once again, using a=0.01, the thresholds
estimated are 10.449, 22.862, 42.473, 69.216, 112.229 and 183.495. Note that the estimated re-
sults are very close to the true thresholds. We note here that these results were obtained on the
basis of one set of observations from the two known distributions, corresponding to a particular
seed value. For a different set of samples the estimates will be different depending on the tail
behavior of that set of samples. But, unless the samples are really not a true representative of the
distribution from which they are drawn, we expect that the estimates based on different samples
should give threshold values that yield false alarm probabilities close to the design value.
10.6.2 An Unknown Distribution Case

In the previous section the underlying distributions were known to us and the estimates based
on the extreme value theory were encouraging for both light and heavy tail behavior. In this
example, we take a non-Gaussian problem where the underlying distribution is unknown.

The two hypotheses characterizing the detection problem are given in equations (9.1-9.2). We
consider the weak signal case for which the clutter is much stronger than the background noise.
The locally optimum detector (LOD) [74] has been shown to be suitable for the weak signal
detection problem. Under hypothesis H;, the signal is denoted by #s;, where 8 is a measure of
the signal strength. For a deterministic signal and a given set of observations r = [ry,r;...,7n]7

the LOD performs the LRT
9Pg)n, (Il”t)la =0
L(r) = —32
0 Pgi, (r|Ho)

where Py, (r|H;) is the joint PDF of ry,r;,...ry under hypothesis H;: i=0,1.

Martinez, Swaszek and Thomas [75] studied the locally optimal detection problem for non-

> (10.53)
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Gaussian distributions and considered the bivariate Laplace distribution as an example. In this
section we illustrate the procedure for determining the thresholds of a LOD based on N=2 and

the received samples having the bivariate Laplace distribution given by

1 -
fr(r1,ra) = WKOI(%TM 19)1/7] (10.54)

where M is the covariance matrix for the two samples, |M| denotes its determinant, rTM~!r is
- equal to (rf — 2prirz +13)/(1 — p?), p is the correlation coeficient between R; and R; and Ko(.)
is the modified Bessel function of the second kind of zero order. The resulting locally optimum
detector statistic is [75]

2 1/2 K, [(2ETM_IE)1/2]

T agm
Trop(ri,ra) = (ETM"Z) Kol(2eT M=i)17] xsTM™ ¢ (10.55)

where s = (s,8;)7, sTM~1r= (r1—pra)s1+(r2—pri1)sz and K, (.) is the modified Bessel function
of the second kind of first order. s, and s; are the known signal levels. In this example we take
81 = 1 and s; = —1. Because of the complexity of Trop(.), it is not possible to determine a
closed form expression for its probability density function.

In many applications in radar, thresholds have to be set to achieve desired false alarm proba-
bilities based on a sample size which is orders of magnitude less than 10/Pr. As will be pointed
out later, the statistic in equation (10.55) represents a worst case situation in the sense that our
simulations indicate that the variance of the test statistic is extremely large. To investigate the
reliability of the thresholds estimated based on extreme value theory with smaller sample sizes,
10,000 pairs of observations (ry,r;) were generated from the bivariate Laplace distribution given
in equation (10.54), with p = 0.90. The values of T op(r, ;) were computed for each pair and
sorted in increasing order. Corresponding to a = 0.01, the largest 100 values of the underlying
statistic (the top one per cent) were selected to fit the Generalized Pareto Distribution. This
experiment was repeated 250 times. The thresl.  corresponding to a certain false alarm prob-
ability Pr of the distribution of the statistic “Lop(r1,72) is estimated from equation (10.51)
as fipy = zo + 6[(%EE)=% — 1]/4 where z, is the 9900 largest value of the statistic. Thresh-
olds were estimated for false alarm probabilities Pr = 10%, k = 2,...,7 for each repetition of
the experiment. Histograms of these threshold values are shown in figure 10.7, for the different

Prs. 'To give a better appreciation for the range of values, the bins are not necessarily of equal
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width. The histograms give an indication of the spread in the threshold values depending on
the particular samples collected. From the histograms corresponding to false alarm probabilities
of 10~2, 1072 and 10~* we can see that the threshold estimates obtained on the basis of cven
one set of samples is likely to approximately yield the desired Pr. Since the uinderlying distribu-
tion of TLop(.) is unknown, one measure of the accuracy of the estimate s the extent to which
most of the estimates fall in one bin of the histogram. Also, we can see that there is negligible
overlap between the estimated threshold values in the histograms for the three different Pgs.
This supports the claim that the estimated threshold is likely to yield a false alarm probability
which is of the same order as the desired Pr. There is a higher overlap in the thresholds of
the histograms for Pr=10"%, 107 and 10~7. Also, there is much higher spread in the threchold
values estimated. Based on the excellent results obtained for the same choices of Prs in the
known cases of the previous section, these results are surprising. However, it is explained as
follows. The 4 values of the GPD estimated for the different repetitions of tkis experiment lie in
the range 0.45 — 0.55. This represents an extremely heavy tailed distribution. Fromn Table 10.1
we see that the Lognormal distribution, which is quite a heavy tailed distrilution, has y=0.232.
The heavy tailed nature of the detector statistic can also be observed by comparing the large
threshold values seen in the histograms with the correspondirg threshclds of the Gaussian and

the Lognormal distributions. The variance of the GPD is given by

o?
Var(X) = =01 =29) v < 0.5
00 v20.5 (10.56)

Thus, the bivariate Laplace results in a very highly fluctuating statistic with an extremely large
variance. As such, it represents a ‘worst case’ situation for empirically determining the thresh-
old. A much larger sample size is needed to obtain reliable threshold estimates because of the
exceedingly large tail of the underlying distribution.

In general, an indication of how heavy the true tail may be for an unknown distribution is

given by the estimate of 4 for the GPD. When an extremely heavy tail is indicated, another

strategy for estimating the thresholds when Pr is very smail is to choose the median value of the
thresholds estimated when the experiment is repeated a specified number of times with 10,000
samples in each repetition. The choice of the median as the estimator ensures that very large

and very small values do not affect the results. For the present example, we chose to repeat the
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]

‘ 250 trials three times. By counting the number of estimates that fell into the bins centered at
- 20, 28 and 36 for Pp=10"", 40, 50,70 and 90 for Pr=10"% and 100 and 150 for Pr=10"7, it was
= found that 88 percent of the estimates fell into these bins. Thus, even for this extremely large

tailed example, we believe that use of the GPD has allowed us to estiinate useful values for the

thresholds with sample sizes much smaller than 10/ Pp.
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Chapter 11

Performance of the Locally Optimum
Detector for the Multivariate
Student-T Distribution

In radar problems involvirg weak signal applications, it is found that the large returns due to
clutter can lead to a small signal to disturbance ratio. The large returns from clutter result
when the density function of the clutter exhibits an extended tail behavior. Consequently, the
probability density function of the disturbance can no longer be modeled as Gaussian. The
significance of a non-Gaussian PDF with an extended tail is that many more large returns result
than would be the case for a Gaussian PDF having the same variance. Hence, there is a need to
be able to model non-Gaussian random processes.

The multivariate student-T distribution is a member of the class of joint PDFs arising from
Spherically Invariant Random Processes (SIRF). SIRPs are explained in detail in the carlier
chapters. When an SIRP is zampled at N instants in time, the resulting vector is said to be
spherically invariant. The theory of SIRPs offers a way to model the joint density function on
these N samples where the correlation between the individual random variables in the vector is
accounted for. With this approach locally optimum detector structures can be derived for non-
Gaussian disturbances without the need to assume that the random variables are statistically
independent. In this chapter we analyze the performance of the LOD when the background

disturbance consisting of clutter and noise can be modeled as having a multivariate student-T

distribution.
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11.1 The Multivariate Student-T Distribution

A convenient procedure for generating a multivariate student-T distributicn is discussed in
this section. Let the random vector X have a multivariate Gaussian distribution with zero mean
and covariance matrix M. The zero mean assumption will not affect the generality of the resnlts
that follow. The joint density function on the elements of X is given by

1 —sT a1

fx(z) = N M7 (11.1)

where the vector X has 2V elements from N inphase and N quadrature samples. Consider the
vector W = X /v, where v is a nonnegative random variable statistically independent of X. Let
wTM~1w be denoted by the variable p. Then, the conditional density function of the vector W

given v can be written as

1 N =4
fw(wlv) = W yNe=T. (11.2)

The unconditional density function on W is given by

fw(w) = /0 " fulwlv)f(v)dv (11.3)

where f,(v) is the probability density function of the random variable v. Because X and v are

statistically independent, it follows that

BW) = B(%)= BX)EW) =0 (11.4)
EWWT) = EXXNEW™?) = E(v M. (11.5)

It can be seen from the above equation thai ihe level for the variance of the elements of the
vector W can be adjusted by appropriate choice of E(v~2).
With respect to equation (11.3), let f,(v) be the generalized chi PDF given by

11—
V‘w le auaﬂ

() =2 11.6
fulw) = ¥ (116)
From equation ( 11.6), £(v~2) can be calculated. Specifically,
lﬁ—l —ou? 00 25-—3 —an? ﬁ
Ew?) = [ 22" 2~ % 1.7
= = [ (0




Letting av? = z in the above equation we get

co ghB=3c~= NG —
zf-3e da:___al(,B )  «

E(u"):a/o T Bt (R BT (11.8)

If we let @ = B — 1, then the generalized chi PDF in equation ( 11.6) is such that E(v=?) = 1
irrespective of the choice for the parameter 8. Then the generalized chi PDF takes the form

92y38-1g~(B~1)s? (B-1)°

fu(v) = T(3) B>l (11.9)

In general, we can set the value of E(v~?) to a desired constant C by choosing @ = C(8 - 1).
Integrating the conditional density function fw(w|v) as given by equation ( 11.2), over the
PDF of the nonnegative random variable v, we obtain the multivariate student-T distribution.

The details are given below. Choosing & = § — 1 in equation ( 11.6) we can write

= [ 1 oy = 20%-le-(B-1 (g _ )0
f!V_(.':.U.) - ‘/0 (27")N'M|l/2y e 3 I‘\(ﬂ) dV
(:3 - l)ﬂ oo 2N+26-1 _yz(ﬂ-‘l'f‘P/z)
(27)N|M|1/21(8) /o v € dv. (11.10)

Letting (8 — 1 + p/2)v? = y we get

L (Bo1P e gt
) = GomamATg) b BT

(2m)NIMP/AC(B)(B — 1 + p/2)N+F

The above expression is defined to be the 2N-dimensional multivariate student-T distribution
with parameters N and 3. N represents the number of complex samples and B determines the
tail behavior of the multivariate density function.

For simulation purposes, the density function in equation (11.9) can be simulated as follows.
The first step is to generate a standard Gamma variate from the density function fy (y) = ”f%(l—fl.
The IMSL package was used to the generate standard Gamma variates. The next step is to divide

the generated random variable by the parameter —1. Let X = Y/(8—1). The density function

of X is

(B - l)ﬁzﬁ—lc-x(ﬁ—l)

fx(z) = T3 (11.12)




The positive square root of zL5 results in the desired density function. Let v = X }. Therefore
X = 12, Introducing the Jacobian of the transformation, the density function of v becomes

9,38-1¢~(0-1)? (ﬂ - l)ﬂ

fulv) = T(5) (11.13)

which is identical to that in equation ( 11.9).

11.2 The Locailly Optimum Detector
The locally optimum detector for the multivariate student-t distribution can now be derived.

From equation (9.32) the locally optimum detector is given as

8/p(r—6s) |
84

T &

§=i

Hy
p (11.14)
Assuming the disturbance can be modeled by a multivariate student-T distribution, fp(r) is
given by equation ( 11.11), where p = r”M~!r. Since equation (11.14) is a ratio test and
all constants can he placed in the threshold which is determined by specifying a false alarm
probability, all multiplicative constants are ignored for convenience. Hence, we will be concerned
only with the terms containing the variable R. Excluding the constant term the numerator in

the ratio test is given by

Ofp(r — 6s é 1
fQ(;o 3).|e=o = %[(ﬂ 1 +p/2)~+ﬂ”0=o' (11.18)

Applying the chain rule, the derivative with respect to 8 can be expressed as the derivative with
respect to p times the derivative of p with respect to §. The derivative of p with respect to 6 at

0 = 0 can be derived as
g—glho = (-éa—o—(g —03)"M " (r — 03))|¢=0 = ~2sTM . (11.16)

Therefore, the numerator in the ratio test, excluding the -onstant, is given by

“‘—afg(;{ 99) o = (B — 1+ p/2) 4840 x TM1y, (11.17)




From the above equation, the sufficient statistic for the locally optimum detector for the muiti-
variate student-T distribution can be written as

Trop(r) = ﬁ%@:%ﬁ' (11.18)
The above result for the LOD statistic is very significant. The numerator in equation (11.18) is
recognized as the Gaussian linear detector. This detector is a matched filter which maximizes
the signal-to-disturbance ratio whether or not the disturbance is Gaussian. In weak signal appli-
cations the signal to disturbance ratio will still be low after matched filtering. The denominator
of the LOD statistic is the nonlinear term in the statistic. The behavior of the nonlinearity is
such that it scales down large values of p and enhances small values of p. The nonlinearity is
plotted as a function of p in Fig. 11.1. This is reasonable because large values of radar returns
result in large p while small values of the returns yields small values of p. Because it is known
a priori that we are dealing with the weak signal problem, large returns cannot be due to the
signal. Consequently, the output of the matched filter is weighted by a small number. On the
other hand, the matched filter output is weighted by a large number when the return is small

and the contribution due to the signal, if present, car be detected.

11.3 Computer Simulation of Performance

The performance of the locally optimum detector in a multivariate student-T distributed
clutter is obtained through computer simulations for weak signal applications. For simulation
purposes a multivariate student-T distributed disturbance vector D and a transmitted signal
vector S have to be generated. The first step in generating the correlated multivariate student-T
distributed random variables is to generate a 2/N-dimensional white Gaussian random vector.
Subroutine DRNNOA from the IMSL package is used to generate a white Gaussian vector of
desired dimension. Each element of the white Gaussian vector is divided by the random variable
generated from the density function in equation (11.9). This results in a white student-T
distiibuted vector. The next step is to introduce correlation between the random variables. The
covariance matrix of the clutter process is assumed known with unit elements along the diagonal.
To get the covariance matrix M of the disturbance we add a small number, determined by the
clutter to roise ratio, to the diagonal elements of the clutter covariance matrix. This serves to
limit the performance of the receiver even where the clutter power is negligible. In this simulation,

the clutter to noise ratio is taken to be 80 dB. Given the covariance matrix,
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Figure 11.1: Nonlinearity for the student-T distribution.
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a cholesky decomposition is carried out such that the matrix M = K K7 where K is a lower
triangular matrix. Multiplying the matrix K and the white student-T distributed vector we
obtain a student-T distributed vector with the desired correlation between the random variables.

The autocorrelation of the clutter process is taken to be a geometric function in this problem.
Assuming radar returns from clutter cells to be highly correlated, as is the case with ground
clutter, the sample to sample correlation is taken as 0.95 in this problem. Specifically, the

sample autocorrelation function is chosen as
Ree(n) = (0.95)" n=0,1,...,N -1 (11.19)

where Rcc(n) is the discrete time autocorrelation function of the clutter process. Using the above
function the elements of the covariance matrix of the disturbance can be filled appropriately.
The elements of the signal vector are chosen such that the n** element S, = e/2"/o(»-1)T 4 —
1,2,...,N. fp represents the Doppler {requency shift of the received signal and T represents the
time separation between sampling instants.

The detector in equation (11.18) is now simulated. A value of § = 1.5 for the multivariate
student-T distribution is chosen because this value results in a relatively long tail for the corre-
sponding marginal PDF of one element of the vector. By evaluating thresholds for specified false
alarm probabilities, the student-T distribution was seen to have heavier tails than the Gaus-
sian distribution for false alarin probabilities less than 10~* but smaller tails than the Gaussian
otherwise.

The threshclds corresponding to false alarm probabilities 10~%; k = 1,2,3,4 are obtained
through the method of extreme value theory explained in Chapter 10. Once the threshold is set
the detection probabilities are obtained by simulating the LOD for received vectors consisting
of the sum of the signal and disturbance vectors for various signal-to-disturbance ratios. The
value of fp is chosen to be zero in this simulation. The number of trials in the Menie Carlo
simulation for each case is equal to 10,000. The performance of the LOD is compared to that of
the Gaussian detector for the same multivariate student-T distributed clutter. The test statistic
for the Gaussian detector is the same as the numerator of the LOD, which is sTM~-'r. The
results are shown in Tables 11.1-11.14.

From the tables it can be seen that, when the false alarm probability is 107!, the LOD and

the Gaussian receiver have comparable perfermances for the various signal to clutter ratios con-

229




sidered, For lower false alarm probabilities, the LOD always outperforms the Gaussian receiver
except for the zero dB entries in Tables 11.1, 11.4, 11.7, 11.11 and 11.12. The difference is
especially significant for false alarm probabilities equal to 10~ and 1074,

From our computer simulations we expect that the performance improvement of the 1.OD
over the linear Gaussian receiver depends on the shape of the tail disturbance PDF. The heavier
the tail of the disturbance PDF, the better is the expected improvement in performance. The
student-T distribution, while being heavier tailed than the Gaussian, is not as heavy tailed as
the K-distribution and Weibull distribution. In fact, the student-T distribution may not be a
likely candidate for modeling the radar disturbance. The student-T distribution was chosen as
the first distribution to be studied only because of the maihematical simplicity and well behaved
nature of its multivariate PDF. Nevertheless, the analysis done with the student-T distribution

confirms that the LOD outperforms the Gaussian receiver for weak signal applications.

11.4 Conclusions

It can be observed from the tables that the Gaussian receiver performance degrades abruptly for
false alarm probabilities less than or equal to 10™% whereas the LOD shows a gentler degradation
in performance. Both the receivers show an improvement in performance as the number of
samples is increased. However, the LOD shows a dramatic improvement in performance when
the sample size is greater than 64. From Table 11.14, it can be seen that for SCR=0 dB and
Pr = 1074, the detection probability for the LOD is 0.3720 while that for the Gaussian recciver
is 0.0003. This represents an improvement factor in the vicinity of 3 orders of magnitude for the
LOD. Also, from Tables 11.3, 11.6, 11.9 and 11.13, we observe that when the Pg is set to 107" the
LOD shows a performance improvement of two orders of magnitude compared to the Gaussian
receiver. For larger sample sizes eg. 64, 128 the detection probability of the LOD is in the tenths
for SCR=-10dB and Pr = 1072, while for the Gaussian receiver it is in the hundredths. Qverall,
when Pr is less than or equal to 1072, the Gaussian receiver requires a signal-to-clutter ratio
10-20 dB larger than that required by the LOD for the same values of Pr and Pp.

The L.OD does not work well if the signal to clutter ratio is too large. The performance degrades
rapidly for signal to clutter ratios exceeding zero dB. The I,OD is designed for detecting targets
when it is known that that the signal is weak. The aim of using a LOD is to obtain detection in
range-Doppler-azimuth cells where conventional space-time processing does not help in getting

acceptable performance. These cells are now ignored because it is felt that they are hopeless for
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target detection purposes. The nonlinearity present in the LOD plays the role of suppressing
large returns. However, if the SCR is high, the large returna are more likely to be caused due
the signal than due to the clutter. Hence, the detection performance will drop off compared to
the Gaussian receiver. In general, when the SCR is relatively high (;0 dB) the likelihood ratio
test is the optimal test for target detection under a fixed false alarm constraint. When the signal
to clutter ratio becornes very close to zero, the LOD receiver will hardly show any detections
even though it would still outperform the Gaussian receiver. This is because the PDFs under
Hy and H,; are so close to each other that it is impossible to separate them without increasing
the sample size by orders of magnitude.

The concept of spherically invariant random processes and locally optimum detectors are
particularly relevant in the con‘ext of modern radar applications. When the radar scans a
volume searching for targets there might be certain regions in the volume where the clutter
returns are so strong that signal returns get blanked out. It is in these regions that we can
obtain detections with LODs. There is a reed to monitor the environment so that we ave able
to separate the clutter regions from velumes that are just limited by background noise. When
detections are liniited by background noise alens, [LODs are inapplicable. In this research effort
work is beginning in the area of using artificial intelligence (AlI) for monitoring the volume. Using
Al clutter patches can be identified and the underlying multivariate PDF of the clutter returns
can be approximated using the library of SIRPs that have been developed. From the library of

LODs the LOD corresponding to the approximated SIRP can be used in clutter regions to obtain

detections if the target is present, where earlier it would not have been possible.




SCR LOD | GR
9dB | Pp | 0./047 | 0.8600
-10dB | Pp | 0.3220 | 0.2800
-20dB | Pp | 0.1611 | 0.1460
-30dB | Pp | 0.1175 | 0.1190 |

Table 11.1: Sample Size=16, Pr = 10~!, SCR:Signal to Clutter Ratio, LOD:Locally
Optimum Detector, GR:Gavssian Receiver

SCR LOD GR

0dB | Pp | 0.3761 | 0.1050
-10dB | Pp | 0.0838 | 0.0190
-20dB | Pp | 0.0246 | 0.0120
-30 dR | Pp | 0.0141 | 0.0.0100

Table 11.2: Sample Size=16, Pr = 10~2, SCR:Signal to Clutter Ratio, LOD:ILocally
Optimum Detector, GR:Ganssian Receiver

SCR LOD | GR

0dB | Pp | 0.1804 | 0.6030
-10dB | Pp | 0.0198 ! 0.0014
-20dB | Py | 0.0027 | 0.0011
-30 dB | Pp | 0.0012 | 0.0.0001

Table 11.3: Sample Size=16, Pr = 10~3, SCR:Signal to Clutter Ratio, LOD:Locally
Optimum Detector, GR:Gaussian Recciver

SCR LOD GR

0dB | Pp | 0.7607 | 0.9090
-10dB | Pp | 0.3608 | 0.3200
-20dB | Pp { 0.1704 | 0.1540
-30 dB | Pp | 0.1202 | 0.0.1190

Table 11.4: Sample Size=32, Pr = 10~!, SCR:Signal to Clutter Ratio, LOD:Locally
Optimum Detector, GR:Gauasian Receiver



SCR LoD | GR
0dB | Pp | 0.2673 | 0.1760
-10dB | Pp | 0.1052 | 0.0220
-20dB | Po | 0.0255 | 0.0130

-30 dB | Pp | 0.0145 | 0.0120

s e vesmie—— S ——r

Table 11.5: Sample Size=32, Pr = 102, SCR:Signal to Clutter Ratio, LOD:Locally
Optimum Detector, GR:Gaussian Receiver

SCR LOD | GOR
0dB | Pp | 0.2621 | 0.0035
-10dB | Pp | 0.0289 | 0.0015
-20dB | Pp | 0.0042 | 0.0012
| -30.dB | Pp | 0.0013 | 0.9001 |

Table 11.6: Samble Size=32, Fp = 103, SCR:Signal to Clutter Ratio, LOD:Locally
Optimum Detector, GR:Gaussian Receiver

SCR LOD GR

0dB [ Pp | 0.8117 | 0.9510
-10dB | Pp | 0.4302 | 0.3790
-20dB | Pp | 0.1278 | 0.1590

-30dB | Pp | 0.1252 | 0.1195

Table 11.7: Sample Size=64, Pr = 10—}, SCR:Signal to Clutter Ratio, LOD:Locally
Optimum Detector, GK:Gaussian Receiver

SCR LOD GR

0dB | Pp | 0.5484 | ¢.3000
-10dB | Pp | 0.1446 | 6.0230
-20dB | Pp | 0.0301 | 0.0120
-30dB | Pp | 0.0152 | 0.0010

Table 11.8: Sample Size=64, Pr = 10~2, SCR:Signal to Clutter Ratio, LOD:Locally
Optimum Detector, GR:Gauss;an Receiver




[ 5CR LOD | GR

0dB | Pp | 0.3643 | 0.0048
-10dB | Pp | 0.0492 | 0.0016
-20dB | Pp | 0.0057 | 0.0012
| -30dB | Pp | 0.0019 | 0.0001

Table 11.9: Sample Size=64, P = 10~3, SCR:Signal to Clutter Ratio, LOD:Locally
Optimum Detector, GR:Gaussian Receiver

SCR LOD GR

0dB | Pp | 0.2522 | 0.0002
-10dB | Pp | 0.0202 | 0.0001
-20dB | Pp | 0.0018 | 0.0001

-30dB | Pp | 0.0005 | 0.0000

Table 11.10: Sample size=64, Pr = 10~4, SCR:Signal to Clutter Ratio, LOD:Locally
Optimum Detector, GR:Gaussian Receiver

SCR LOD | GR
0dB | Pp | 0.8517 | 0.9790
-10dB | Pp | 0.4987 | 0.4870
-20dB | Pp | 0.2080 | 0.1710
-30dB | Pp | 0.1314 | 0.1186
-40dB | Pp | 0.1106 | 0.1059

Table 11.11: Sample Size=128, Pr = 10~!, SCR:Signal to Clutter Ratio, LOD:Locally
Optimum Detector, GR:Gaussian Receiver

SCR LOD GR

0dB | Pp | 0.6511 | 0.7050
-10dB | Pp | 0.2190 | 0.0320
-20dB | Pp | 0.0445 | 0.0150
-30dB | Pp { 0.0198 | 0.0116
-40dB | Pp | 0.0147 | 0.0010

Table 11.12: Sample Size=128, Pr = 102, SCR:Signal to Clutter Ratio, LOD:Locally
Optimum Detector, GR:Gaussian Receiver
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SCR_ | [ LOD | GR
0dB | Pp | 0.4777 | 0.0080
-10dB | Pp | 0.0869 | 0.0020
-20dB | Pp | 0.0098 | 0.0013
-30dB | Pp | 0.0087 | 0.0011

-40dB | Pp | 0.0021 | 0.0001

Table 11.13: Sample Size=128, Pr = 10~3, SCR:Signal to Clutter Ratio, LOD:Locally
Optimum Detector, GR:Gaussian Receiver

SCR IOD | GR
0dB | Pp | 0.3720 | 0.0003
-10dB | Pp | 0.0430 | 0.0002
-20dB | Pp | 0.0039 | 0.0001
-30dB | Pp | 0.0007 | 0.0001
| -40dB | Pp | 0.0003 | 0.0000

Table 11.14: Sample Size=128, Pr = 10-4, SCR:Signal to Clutter Ratio, LOD:Locally
Optimum Detector, GR:Gaussian Receiver
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Appendix A

Properties of SIRVs

In this appendix we present some original proofs for properties of SIRPs stated in the literature.

A.l1 Statistical Independence

An SSRV X = X1, X3, ..., XN]T results in statistical independence of the X;¢=1,2,...,N
if and only if the SSRV is Gaussian.
Proof: Recall that the PDF of X can be expressed as

fx(x) = khy((a} + 23 + ... + 23)F] = (27) Fhn(VaTx). (A.1)

If the components of X are statistically independent, then the PDF given by eq (A.1) must factor
into the product of the marginal PDF's of the components of X. It then follows that

N
hl(el + 23+ ...+ 2})5] = ] (=) (A2)
=1
Letting r = («3 + 23 +... + 2% )} and differentiating both sides of eq (A.2) with respect to x;,

results in
N

Zanr) = T (e, (A3

i=1

J#i




Dividing both sides of eq (A.3) by z;Ax(r) results in

hn(r) _ g(=i)
rhn(r) — zig(z)’ (A4)

Equality holds in eq (A.4) if and only if the left and right sides of eq (A.4) are equal to the same

constant. Denoting this constant by —\, we have

hy(r)
() = (A-5)

Integrating both sides of eq (A.5) with respect to r gives
hw(r) = aeap(~2") (A6)
where a is the constant of integration. Hence,
hl(ed + 25+ ..+ 2h)}] = aewpl—S(al 4 23+ .. + 2} (A7)

Substitution of eq (A.7) in eq (A.1)clearly results in the Gaussian PDF. The constraint of unity

volume under the PDF results in a = A¥.
In order to prove the sufficient part of the property, we start with the marginal PDF's of the

components of X given by
27, 1 Az?
Fxi(i) = () Fezp(——5*). (A.8)
Under the assumption of statistical independence, we obtain the PDF of X by taking the product
of the marginal PDF's of its components as
27 _ A
fx() = () Feap(~3 Y ). (A.9)
=1

Clearly the PDF given by eq (A.9) is of the form of eq (A.1). Hence, the sufficient part of the
property follows.
An alternate proof of this property can be obtained by using the representation theorem. The

representation theorem allows us to express the SSRV X as a product of a Gaussian random

vector Z having zero mean and identity covariance matrix and a non-negative random variable




S. More precisely, we can write
X = Z8. (A.10)

The components of X can be statistically independent if and only if S is a constant. When S is
a constant, X is a Gaussian SSRV. As is often the case, the representation theorem provides a

simplified approach for determining properties of SIRVs.

A.2 Spherically Symmetric Characteristic function
In this section, we prove that the characteristic function of an SSRV is spherically symmetric.
Proof: We consider the SSRV X = [X;, Xa, ..., Xn]T. From the representation theorem,
we can write X. = ZS where Z is a Gaussian random vector having zero mean and identity
covariance matrix and S is a non-negative random variable with PDF fs(s). The characteristic

function of X given by

&x(w) = Elezp(jw’ X)) (A.11)
whers w = [wy, wy,...,wn]T can be expressed as
Px(w) = Es[®xs=+(w)] (A.12)

where ®xs=,(w) = E[ezp(jw?Zs)]. However,

g2 N
Elezp(jwTZs)] = exp(—-l2—- W) (A.13)

=1

Using eq (A.13) in eq (A.12) results in

o 2 N
Px(w) =/0 ezp(—-:?— Y- w?) fs(s)ds. (A.14)

1=1

The characteristic function given by eq (A.14) can be expressed as a function of vVwTw. Hence

it is spherically symmetric.

A.3 Relationship Between Higher Order and Lower Order SIRV
PDF's

In this section we examine the relationship between the higher order and lower order SIRV

PDFs. More precisely we consider an SIRV Y = [V}, Y2, ..., Yn]T having mean vector x4, covari-




ance matrix X and characteristic PDF fg(s). The PDF of Y is given by
Fe(y) = 2x) ¥ |24 hn(p) (A.15)
where p = (y — #)TB-}(y - p) and
o0 - p )
hn(p) = /o 5N eap(— £2) fs(s)ds. (A.16)

The vector Y can be partitioned ac Y = [Y17 Y27]T whete Y; = [1}, ¥;, ...Y,,)T and
Y2 = [Yos1, Yinsay - .. YN]T. Lel p1 and ua denote the mean vectors of Y1 and Y3 respectively,
and X; and Xy denote the corresponding covariance matrices. We need to obtain the PDF of
Y from the PDF of Y by integrating out over the N —-m random variables (i.e., the components
of Y3). Let py = (y1 — p1)TE7 (y1 ~ 1) and p3 = (yz - u2)TS3(y2 — #2). The PDF of Y,

is given by
_ _N - 00 o -N p
Fey 1) = @B [T [ 5 Neap(— L0 fs(s)dsa¥a. (A.17)

From {38] (p17 eq.8, p18 eq.11) we have
- -4 [ P - -4 N-m P
@m)H[B1 [ eop(-Lo)a¥s = @m) R ma AV meap(- 2. (A19)

Using eq (A.18) in eq (A.17) gives
-y (-1 % —-rmn P1
fey (1) = (2m) R[S |} [7 mmeap(—F5) fs(s)ds. (A.19)
The PDF of Y3 can be expressed as
fry(v1) = (27)"F |21 [ hm(p1) (A.20)

where

hon(p1) = /0 ~ s'"'e:z:p(—z%l;) fs(s)ds. (A.21)

Clearly, hn(p1) given by eq (A.21) can be obtained from eq (A.16) by simply replacing N by m
and p by p;. To determine the PDF of Yy, all that is needed is the specification of its mean
vector and covariance matrix. As a special case, when m = 1, eq (A.19) gives us the first order

SIRV PDF. Therefore, to obtain the first order SIRV PDF of the :** component of Y starting
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from the N** order SIRV PDF, we simply use eq (A.19) with m = 1, B = 0; and p; = =il

9
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Appendix B

Computer Generation of SIRVs Using
the Rejection Method

B.1 Rejection Method

We present a proof of the rejection procedure [42] used for generating the norm R of the
white SIRV X in Chapter 4. In many instances, it is likely that the PDF of a random variable is
known explicitly, but its cumulative distribution function is either unkrown or has a complicated
functional form. Consequently, the cumulative distribution function cannot be inverted easily.
Therefore, the use of the inverse distribution function for generating the random variable does
not offer a practical solution for this problem. Hence, it is necessary to use a different scheme for
generating the random variable. We consider the problem of generating a sequence of random
numbers with PDF fgr(r) of a random variable R, in terms of a random number sequence with
PDF fy,(u1) of a random variable ;. The underlying assumption is that the random number
sequence from the PDF of U, can be readily generaced.

The rejection method used in Chapter 4 is based on the relative frequency interpretation of

the conditional PDF
P{!h <U; <y +du1,M}

P(M)

of a random variable U, given the event M. M is expressed in terms of the randcm variable U,

fu, (w1l M)duy = (B.1)

and another random variable U, and is choser. so that the resulting conditional PDF fy, (u,| M)
equals fgr(r). The desired sequence is generated by setting R = U, given that the event M has
occurred and rejecting U; otherwise. The problem has a solution only if the domains of r and

are such that fr(r) = 0 in every interval for which fy, (u;) = 0. Therefore, we can assume that
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the ratio f—;’-'?(—’% is bounded from below by some positive constant a:

f‘t:;((v;,) 2a>0 for every u, (B.2)

B.2 Rejection Theorem

It is desired to generate a random variable R with PDF fgr(r). Let U; be any random variable
with PDF fy, (u;) such that fy,(u;1) = 0 whenever fr(r) = 0. Let U; be 2 uniformly distributed

random variable on the interval (0,1). If the random variables U; and U, are statistically inde-

pendent and
M= {U; < g(th)} (B.3)
where f (1)
R(U1
g(wy) = fv,(ul) <1, (B.4)
then

fo, (w1l M) = fr(w). (B.5)

Proof: The joint PDF of the random variables U; and U, can be written as fu, v, (u1,u;) =

Ju.(w1) fu, (u2), since U; and U, are statistically independent. Hence, we have
0o rg(u1)
P(M) = / / 1 Ju, (1) fu, (uz)durdus. (B.6)
-0 JO
However, since U, is uniformly distributed in the interval (0,1) and g(u;) <1,
9(u1)
/ fu, (u2)dug = g(uy). (B.7)
Using eq (B.7) in eq (B.6) gives
o0 , .
PM) = [ gtun)fo, (w)dur. (B.3)
However, g(u,) = a%. T herefore, we have

PM)=a [ fr(u)du = a. (B.9)

-0
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We can express the numerator of eq (B.1) as

Pluy < Uy < uy + duy, M) = /0 “ o (1) foa (ua)durduz = gluss) f, (w1 )dus = o (o )dus.
(B.10)
Using egs (B.9) and (B.10) in eq (B.1) results in eq (B.5).
Thus, we have the following algorithm for generatirg the sequence of random numbers from
the PDF of R.

1. Generate Uy and U;.

2. {U; < afB0LL then Uy = R
1
3. Otherwise reject Uy.

With reference to the gencration of the norm R in Chapter 4, U; and U, were uniformly
distributed random variables. Let ¢ denote the maximum value of the PDF of R and b denote a
finite range for the PDF of R such that the area under the curve of the PDF is close to unity.
U is assumed to be uniformly distributed in the interval (0,5). Clearly, if%(%’)l > &. Hence,
E_%-E%‘)‘—)- < 1. Therefore, a = 5!; Step 2 above becomes: If U; < b—c%‘)l—) = [B-(cl‘-‘)-, then U, = R.
This can be rewritten as: If cU; < fr(uy), then Uy = R. For ease of implementation, this latter
form is used in conjunction with a uniform random variable U, that is uniformly distributed over
the interval (0, ¢). This is the procedure followed in Chapter 4.

The method used in Chapter 4 becomes inefficient if U, is rejected frequently in step 3, resulting
in the necessity to generate the two uniformly distributed random variables of step 1 an inordinate
number of times. This problem can be overcome by using for U; a PDF which bounds the PDF
of R and satisfies the conditions stated in section B.1 and in the rejection theorem. Then a
random variable from this PDF is used in step 1 instead of the uniform random variable U,.

A second drawback of using a uniformly distributed random variable U; is that it may not be
possible to efficiently generate SIRVs of length greater than 8. This is due to the fact that the
PDF of R depends on N. Consequently, the uniform distribution for U, may not satisfactorily
bound the PDF of the norm R for all N. This drawback can be overcome by choosing a different
PDF for U, for each choice of N, such that the conditions stated in section B.1 and in the

rejection theorem are satisfied. This method would require the use of an exhaustive table which

tabulates the appropriate PDF of U, for each desired value of N.
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Finally, it is pointed out that by using a composite function for the PDF of U,. it is possible
B to improve the simulation procedure in terms of being able to generate random numbers from
the body and the tail of the PDF of R. These issues aze suitable topics for future investigation

as an extension of this work.
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Appendix C

C.1 Limiting Forms for the Largest Order Statistic
Let X; < X3 £ ... € X, be the ordered statistics of n random variables having a common
distribution function F(z). Assuming that the trials of drawing the random variables from the

distribution function F'(z) are independent, the distribution function of the largest order statistic

X is given by

P(Xn S .’l’) = P(X1 S .’B,Xz S $,...,Xn _<_ .'D)
= F"(x). (C.1)

When F' is continuous but nnknown, an asymptotic theory is developed for F in the range 04 to

1_ [68]. It is shown that positive sequences {a,} and {b,} exist such that

Xn — by

an

lim P(

n=+00

<z)= lim P(Xn £ anz + b)) — A(2) (C.2)
or equivalently, by mears of equation (C.1), that
Jim FManpz + b,) — A(z). (C.23)

Let n = md in equation (C.3). d is a fixed positive constant so that as n — 0o, m — o0o. Using

the fact that n = md, we can write
Jlim F™(amat + bpa) = Jim F'(anz + b,) = A(z). (C.4)

It is also true that

Nim [F™(amz + b)) = lim F™(anz + bn) = A%(2).
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If equations (C.4) and {C.5) hold, then from a theorem of Hintchin [76], there exist numbers

Aq > 0 and By > 0 such that
A Aqz + By) = A(z) (C.6)

for all integer values of d.
Solution nf the above functional equation yields all the possible limniting forms for the distribn-

tion function F™(z). The constant A; may or may not be unity. If it is unity, then the functional

equation to be solved is given by
Ad(z + By) = A(z). (C.7)

On the other hand, if A4 is not unity, ihe form of equation (C.6) stands and there exists a value
Tog = B4/{1 — Ag) such that
A¥(zod) = A(%oa). (C.8)

Constraining the solution to the above equation to be real and nonnegative, the solutinn is either
A = 0 or 1. However, because A(z) is a distribution function the value of A can be 0 only if zyq
iz the lower endpoint at which A(zgq) = 04 and A can be 1 only if 294 is the upper end at which
A(zo4) = 1-. Since Ay and By are assumed to be finite, xo4 must also be finite. Consequently,
there is no loss in generality by assuming that the endpoint of interest is located at the origin
(i.e., zog = 0). When Aq # 1, note that zo4 = 0 implies By = 0. As a result, the solutious for

equation (C.6) fall into three cases which are given below.

l) Ad(.’L‘ + Bd) = A(:L‘) Ag =1 (C.9)
2) AYAar)=Az) As#1F=0whenz=0 (C.10)
3) A Awr)=A(x) Ag#1F=1whenz=0 (C.11)

C.1.1 Case 1l

Case (1) of equation (C.9) is solved as follows. Taking the logarithm, we have
log A(z) = d log A(z + Ba). (C.12)
Multiplying through by a minus sign and taking the iogarithm of both sides, we obtain

log[—log A(z)] = log d + log[—log A(z + Ba)]. (C.13)
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For simplicity, lat

9(z) = log[—log A(=)]. (C.14)
Then equation {C.13) becomes
9(z) = log d + g(z + By). (C.15)
Equivalently,
| 9(z ~ Ba) = log d + g(z) (C.16)
“ or
9(z) = g(z — By) — log d. (C.17)

Adding equations (C.15) and (C.17), we obtain
9(z + Ba) + g(z ~ Ba) = 29(x). (C.18)

The above equation is valid for all z if and only if g(z) is linear in z. Specifically, let

glz) =kz +j (C.19)
where j and k are constants. Then
g9(z + By) = k(z + Ba) +j = g(z) —log d = kz + j — log d. (C.20)
It follows that
kBy=—logd or k=—'299 (C.21)
By

Substituting equation (C.21) in equation (C.19), we see that

g(z) + = logd = j. (C.22)

Using equation (C.14), this result becomes

log|—log A(z)] + ° ’°~" 4. (C.23)
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Thus, we have

log[—log A(z)] = _z l;g d + . (C.24)

d
Hence, for case (1) of equation (C.9) to hold, log[—log A(z)] must be linear in z.
We now solve for the sequence {B;}. For this purpose, let d = pg where p und g are both

integers. Note that
AP (z + By,) = A(z). (C.25)

From the above equation we get

Az +By) = A¥i(z)
= [A¥(@))t = [A(z + B¢
= Ai(z+B,) = A((z + By) + B;) = A(z + B, + B,). (C.26)

Equation (C.26) implies that
By, = B, + B,. (C.27)

We now determine the functional dependence of the sequence {By} on the subscript d. To

emphasize this functional dependence, we rewrite equation (C.27) as
B(pq) = B(p) + B(q). (C.28)

From the above equation, it is clear that the functional dependence is logarithmic. Thus, the

solution for By is given by

B(d) =By =logd (C.29)
Substituting equation (C.29) into equation (C.24) yields
log[—log A(z)] = —z +j (C.30)

where j plays the role of a location parameter. Hence, without loss of generality, j is chosen to

be zero. The above equation then simplifies to

log[—log A(z)] = —=. (C.31)
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Solution for A(z) results in
A(z) = exp(~e~7). (C.32)
Equation (C.32) is the solution of equation (C.9) for case 1.
C.1.2 Cases 2 and 3
The solutions to Cases (2) and (3) of equation (C.10) and (C.11) are now derived. In both
cases we have

Ad(Agz) = A(2). (C.33)

From equation (C.33) we get
log A(z) = dlog A(Aax). (C.34)

Multiplying through by a minus sign and taking the logarithm of both sides, we obtain

log[—log A(z)] = log d + log[—log A(A4z)). (C.35)
As in case 1, let
9(z) = log[—log A(z)). (C.36)
Then equation (C.35) becomes
g(z) = log d + g(Aqz). (C.37)
Alternatively,
9() = log d + g(z) (C.38)
d
or equivalently,
T
g(z) = —log d +g(z-). (C.39)
d
Adding equations (C.37) and (C.39) results in

9(4a) +9(77) = 2(2). (C.40)

The solution to the above equation is

g(z)=xklogz forz>0




and
g(z) = £k log (—z) forz <0 (C.42)

where k is a positive constant. Use of equation (C.36) in equations (C.41) and (C.42) yields

log[—log A(z)) = £k logz for z >0 (C.43)
log[—log A(z)) = £k log (—z) for 2z <. (C.44)

For Case 2, A = 0 when z = 0. This implies z = 0 is the lower end point of A(z). Hence, A(z)
is nonzero for « > 0. Therefore, our solution is given by equation (C.43) where we must choose

the sign in front of k to be negative. Then
log[-log A(z)] = —klogz z20 (C.45)

which results in
A(z) = exp(—z~F) z 2 0. (C.46)

For case 3, A = 1 when = = 0. This implies that = 0 is the upper endpoint of A(z). Hence,
A(z) is nonzero for £ < 0. Consequently, the solution is given by equation (C.44) where we

choose the sign in front of k to be positive. Then
log[—log A(z)] = k log(—=z) z<0 (C.47)

resulting in

A(z) = ezp(—(-z)¥) =z <0. (C.48)

Thus, the three possible limiting forms for the distribution A(x) that arise as solutions to

equation 1 are given as follows:

1) A(z) = exp(—e~*) (C.49)
2)  A(z) = exp(—z7*) z20,k>0 (C.50)
3) A(z) =exp(—(-z)*) =z<0,k>0. (C.51)
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C.2 Tails of Probability Density Functions

Equations (C.49-C.51) represent the the three possible limiting forms of the distribution func-
tion for almost all smooth and continuous probability density functions. By differentiating the
three functions, we obtain the three possible limiting forms for the prebability density functions

themselves.
C.2.1 Casel

The derivative of A(z) is given by
H(z) = %A(x) = ezp(—e~%).(~e~%)(—1) = e~Fexp(—e*) = exp(—~z — €77). (C.52)

In our application we are interested in the right tail of the probabilily density function. Since
we have to set thresholds corresponding to small false alarm probabilities, the thresholds will be
in the right tail of the probability density function. When =z is very large, 2 3> e~*. Therefore,
equation (C.52) can be simplified to obtain the PDF of the tail as

H(z)=e*  zlarge. (C.53)

C.2.2 Case 2

The derivative of A(z) is given by

H(z) = %A(w):emp(—m"‘).(lsw""l)

= kexp(—z~*)el*-V92) = k egp(—z~* — (k + 1)log ). (C.54)

When z is very large log x 3> z~*. Therefore, equation (C.54) can be simplified to obtain the
PDF of the tail as

H(z) = ke~*+Dlo0 2 . pg=k+1) & 5 0 3 large k > 0. (C.55)

C.2.3 Case 3

The derivative of A(z) for this case is given by

H(@) = 2-A(z) = exp(~(~2)*).(k(~2)*")
= kezp(—(—z)*)elF-9-2) = k exp(—(—z)* + (k — 1)log «). (C.56)
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When -z is very large, (—z)* 3 log z. Therefore, equation (C.56) can be simplified to obtain
the PDF of the tail as

H(z) = ke~-=" £ .20,-z large k > 0. (C.57)

A basic assumption in the above development is that successive trials are independent. This led
to equation (C.1). In practice, as n becomes large, it may be difficult to ensure the independence
of successive trials. To the extent that the assumption holds, the results in equations (C.49-C.51)

are valid.

C.3 PDF of the r** Ordered Statistic

Suppose that the ordered samples X; < X3 < ... £ X,, are drawn from the distribution function
F(z). Let us further assume that the trials used to draw the samples from the distribution are
independent. Consiaer the r** ordered statistic X,. Recall that P(X, < z) is the distribution
function of X,. This, in turn, is the probability that at least r of the Xs are less than or equal

to . Treating this as a Binomial problem, the distribution function is

n ] , .
Fx,(2) = P(X, S 2) = Y mrm— Fi()[1 — F(2)]"™ (C.58)
i=r z'(n - Z)!
where the :** term in the summation is the binomial probability that exactly ¢ of X;, X3, ..., X,
are less than or equal to z. Using integration by parts, it can be shown that equation (C.58)

can be represented in terms of integral

Fxz) = (r— 1)?(!n —r)! /OF(’) (L - g, (C.59)

The probability density function of the r** ordered statistic is the derivative of Fx, (z) and is

given by
fxe(@) = d_c:lr-Fx'(z) T (- 1)?(!n - r)!%/onz) (1= t)" " dt
n! r--1 z _ 21" f(z '
(r——l)!(n—r)!F (@)1 - F()]"" f(=) (C.60)

where f(x) = L F(z). Equation (C.60) represents the general form of the PDF of the r** ordered

statistic. If F(z) is known, then the mean and the variance of the r** ordered statistic can be
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calculated. The expected value of X, is given by

n! % r=1 n-r
E(X0) = oy / "~ aF (@)L - F@)" f(#)de. (C.61)

An alternate form for the expected value of X, can be obtained by letting 4 = F(z). Therefore,
z = F~"(u). The infinite limits of the integral in the above equation then becomes finite after

the transformation. The transformed integral is

B(X,)= 7= 1)'!‘(’n_r)! /0 ' F (1 - u) T da, (C.62)

The variance of the rt* ordered statistic is expressed as
Var(X,) = E[(X, — E(X,))}] = E(X?) - E*(X,). (C.63)

Making use of equation (C.60), E{X?) can be written as follows.

/ " BFY(2)[l - F(2)]*" f(z)ds. (C.64)

bl >

n!
B(X) = oD =1

An alternate form for the expected value of X, can be obtained by again letting u = F'(z). We
then get

2 n! 1 -1 2 r-1 n-r \
E(.X,)=(r_1)!(n_r)!/o[p (W)])2u" (1 = w)""du. (C.65)

The variance of X, cau be calculated from equations (C.62) and (C.65) when F'~!(u) is known.
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